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Preface

The purpose of this thesis was to develop experimental descriptive regression models for esti-
mating the job performance, or productive capacity (PC), of Air Force Aerospace Ground Equip-
ment (AGE) mechanics. The data that T used were collected under the Air Force’s Productive
Capacity Project by myself and other personne! from the Manpower and Personnel Researcvh Divi;
sion, Human Resources Directorate, Armstrong Laboratory (AL/HRM), and contractor personnel
from the Human Reso: rces Research Organization (HumRRO), Alexandria, VA, and the Systems
Research and Applications (SRA} Corporation, San Antonié, TX. I was fortunate enough to work
with these cc tent people in the project planning, data collection and preliminary aralyses of

the collectec. data.

The Productive Capacity Project is paft of an ongoing research and development effort aimed
at identifying methods for best using Air Force personnel. The Air Force recognizes that in this
day of force downsizing and shrinking defense budgets, it must make optimal use of its personnel
resources. Making best use of personnel resources implies the need to be able to validly and reliably
measure and quantify airmen job performance. It also implies the need to be able to model, or
predict, the job performance of Air Force applicants and incumbent personnel. Mathematical
modeling of job performance can con:ribute substantially to the Air Force's ability to better plan
and use its manpower resources. This thesis research fits into the bigger picture of optimal use of
resources by providing analyses of the effects of two important predictors, aptitude and expel.ence,

on airmen job performance.

This thesis would not have been possible without the continuous help and guidance from
the personnel of AL/HRM. I am most indebted to Ms. Jacobina Skinner for her enormous help
in gathering background material and in providing non-stop consultatiohs throughout. I am also

grateful to Mr. Bill Glasscock for his help in creating the impeccable data files that were provided




to me. And, this thesis would literally not have been possible if Lieutenant Colonel Roger Alford
had not granted me permission to use the Project data. My thanks goes to all of them.

Next, I wish to express my appreciation to Professor Daniel Reynolds for serving as the thesis
advisor. His continual guidance saved me from going too far astray un many occasions. And, I say
thanks to Lieutenant Colonel Kenneth Bauer forvhis help and patience while serving as a reader
and department representative for this effort.

1 would be remiss if 1 did not thank my many classmates who helped me through this effort.
In particular, I extend my appreciation to Captains Tim Mott, Randy McCanne and Tom Sterle
for their unending moral support.

Last, and most of all, I wish to thank my loving and supportive wife, Mary Jean, and my

children for supporting me and tolerating my absence (even when I was there).

Robert S. Fareuff
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Aostract

This study investigated the effects of mechanical aptitude and job experienc: cn the job
performance of 204 Air Force Aerospace Group Equipment (AGE) mechanics. job performance
was expressed as productive capacity (PC), which is derived from estimated ‘performance times on
job tasks. PC neasures were derived for 50 tasks typically performed by airmen in the specialty.
Aptitude measures took the form of Mechanical percentile composite scores on the Armed Services
Vocational Aptitude Battery (ASVAB). A second-order logistic model was used to regress PC on
aptitude and experience at the task level aﬁd at the overall job, or aggregate, level. Model R?s were
éenera]ly iow. For the tasks, R?s ranged from .01. to .13, and for the aggregate model the R? was

about .16. Generally, experience was a significant predictor but aptitude was not. There was also

" no indication of an aptitude/experience interaction. These results were verified through forward

stepwise regression. There was some evidence that airmen may experience some skill degradation

on production-type tasks at around the six year point as they transition to supervisory roles.



PREDICTING THE PRODUCTIVE CAPACITY OF AIR FORCE
AEROSPACE GROUND EQUIPMENT PERSONNEL USING
APTITUDE AND EXPERIENCE MEASURES

1. Introduction

1.1 General Issue.

Over the last several years, the Air Force has conducted numerous research activities aimed at
developing sound ways of mo:isuring the job performance of its personnel. These research activities
wete :he.resulf of three primary requirements (16:1) (30:1). Fivrst,‘ program managets in the Air
Force’s manpower, personnel and training communities expressed concern that job performance
measures were needed for the evaluation ofth;éir training and sclection programs. Second, managers
of Air t'orce research and development (R&D) programs needed job performance measures to serve
as objective criteria for g.ssossillg the unpact of various factors on individual and unit effectiveness.
The third and most pressing requirement was a directive 1ssued to the armed services in 1950 hy
the Assistant Secretary of Defense (Manpower, lieservo Affairs and Logistics). The directive tasked
the services to link their enlistment aptitude standards to job performance. This of course required

| the services to develop valid job performance measurement systems. Adding to the force of the
directive, the House Committee on Appropriations tasked the Office of the Secretary of Defense in
1983 to provide direct oversight for joint-service rescarch activities to address the measurement of

military job performance and the linkage of job performance to enlistment standards.

These initial requirements provided the impetus for the planning and execution of several ma-
Jor R&D efforts by the services throughout the 1980s. These rescarch efforts were accomplished pri-

marily under a joint-setvice progriam called the Job Performance Measurement (JPM)/Enlistment

Standards Project.




By 1990, the Air Force had developed a detailed jub performance measurement system and

had essentially fulfilled all the initial requirements. The Air Force, however, did not elect to
abandon its research on job performance. Instead, it began the Productive Capacity Project in
1990 to continue its research on the development and potential uses of job performance measnres.
The Air Force felt that much more could be gained through job performance R&D. It r.cognized
that job performance research could be of great potential value in force acquisition and manpower
modeling and plan,;ling‘ For instance, it saw that if job po:rfoxﬁancc could be modeled or predicted
for those desiring to enter the service, those who would likely perform well could Be identified for
s.electionA Also, the Air Force saw that if it could model or predict the performan-e of its incumbent
personnel, airmen could potentially be allocated or assighcd to jobs so that manpower resources

are best used.

The need for sound manpower modeling and planning has been highlighted by several recent
events which include a virtual end to the Cold War, Operations Desert Shield and Descrt Storm,
sending of troops to United Nations (UN) sponsored activities, defense budget cuts, and force
downsizing (30:i). There seems to be a trend of increasing world instability and a decreasing
military to deal with it. What the future likely holds for the military is increasing demands placed
on a smaller force. There is no doubt then that manpower resources must be planned and used
wisely. This means the Air Force must be able to validly measure job performance and, more

importantly, be able to predict it for its personnel.

Since the Air Force does not have a crystal ball to help it to predict the performance of if its
applicants and incumbents, it has typically relied on job performance models to do the prediction.

The most frequently used models have been regression-based mathematical models.

Unfortunately. the development of such models can be frustrating. Development of job per-
formance models involves numerous elusive problemns that have plagued Industrial/Organizational

Psychologists and other analysts for years. For instance. developers of job performance models typ-



ically must define job performance, ﬁguré out how to accurately mc;asure it,idecide which factors
influence it. and figure out how the influencing factors (called predictors) mathematically relate to
purforraance measures—none of these have proven to be a trivial undertaking. Despite the diffi-
culties in deve]obing mathematical prediction models, the need for them exists, and the Air Force
continues to try to develop them.

To be successful in developing matllenlatical models fo; prediecting job peiformane: vthc Al

Force must continue to accomplish the following items:

e Define job performance.

e Develop valid and reliable measures of job performance as defined.

Apply the job performance measures to a representative sample of incumbent airmen.
o Identify factors likely affecting job performance (predictors).

Look for mathematical relationships hetween predictor variables and the job performanece

measures of the airmen sample, and identify significant relationships.

Specify un appropriate mathematical model that relates the significant predictor variables to

Jjob performance measures.
o Validate the mathematical model, perhaps on another independent sample of airmen.

It is important to point out that the above items represent a continual, iterative process and not
a one-time-through list. The process can be viewed as having three distinct components or phases

which are illustrated in Figure 1.

The process components are job performance measurement. job performance modeling and
model validation. The process components and their subitems frequently require revisiting as
more job perfurmance measurement knowledge is gained. Each job performance research eflort
seems to contribute a little more to the job performance knowledge base while at the same time

creating as many new research questions as it answered. Progress toward development of sound
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Bl Define Job Pedformanc-

Ei  Develop Valid and Reliable Measures of Job Peformance JOB PERFORMANCE MEASUREMENT

B  Collect Job Perform ance Data

B ldentify Predictors
B Identify Significant Relationships Between All Factors JOB PERFORMANCE MODELING

Specify a Mathematical Model For Predicting Performance

B Validate the Mathematical Mode! I MODEL VALIDATION

Figure 1. Job Performance Model Development Process

Jjob performance measures and valid job performance models has been slow and has come in small

increments. Much progress is yet to be made.

Whereas the joint-service JPM Project addressed mainly the job performance measurement
component of the modeling process. the current Productive Capacity Project is attempting to
wddress all of them. Initially under the Productive Capacity Project, the job performance measure-
ment component of the modeling process was addressed—job performance was defined, experimen-
tal measures of job performance were developed, and the measures were applied to personnel in
four Air Force Specialties (AFSs) (21). The next step was to proceed to the job performance mod-
eling phase. This required identification of factors likely affecting job performance, specification of
mathematical relationships between such factors and job performance, and formulation of proto-
type mathematical models expressing the relationship between the factors and job performance. It

was this job performance modeling phase that provided the hasis for this thesis.




1.2 Statement of the Problem.

The general problem facing the Air Force is that although it could greatly benefit from the
ability to forecast the future job performance of applicam.s‘and incumbents, it is currently limited
in its ability to do so: Development of joh performance pr.ediction models has not yet progressed
to the point whe;e current models are suitable for oberational use. If suitable models are to be

developed, the model development process must continue.

On a much smaller scale, the Air Force would like to use the data collected under the Produc-
tive Capacity Project to develop experimental regression-based mathematical models for relating
'joh performance measures to certain predictor variables. The predictor variables the Air Force

wishes to consider are mental aptitude and job experience.

The purpose of this thesis was Lo addresg this smaller scale problem by performing the re-
quired regression analyses on the Productive Capa‘cit'y Project data to obtain the model parameter
estimates needed to formulate an experimental model. In terms of the model development proéess
exbressed in Figure 1, this thesis addressed the last two items of the model development component,

given the Productive Capacity Project data and the predictors, aptitude and experience.

1.3 Research Objectives,

| 1.3.1 Formulate a Productive Capacity Measure [rom Estimated Task Performance Times.
The job performance data collected under the Productive Capacity Project were in the form of

estimated performance times on various job tasks specific to each of four jobs studied.

In their raw form, the estimated performance times were of limited valu@ One problem with
them is that the raw times themsel.ves communicate little about an individual’s relative level of job
performance. In order to assess performance level, one must first have knowledge about how others
perform on the tasks, such as how long on average it takes people to do the tasks. Another problem

with raw time data is that they do not have meaning outside of the associated tasks. The task

=1




performance times have meaning only within a task wichin a job, and not across tasks or across jobs.
Comparing performance times across tasks is like the proverbial comparison of apples to oranges.
To illustrate these problems, consider a two-task scenario where the average times to complete the
t.v.vo tasks are 10 and 20 minute'a, respectively. Assume an individual completes the first task in 15
minutes, and the second in 15 minutes as well. Without also considering the average performance
times for the tasks, the individual's performance times suggest that performance was comparable
on the tasks. But, when considering the average performance times, it can readily be seen that
the individual took significantly longer than average to complete the first, and considerably shorter
to complete the second. There is obviously a difference in performance levels across the two tasks

that cannot be seen from the raw data.

This implies a need to standardize the performance time data. One possible standardization
could be obtained through forming a ratio of the time data to a constant, say the task mean. This
transformation of the time data would have thé desired affect of making the resulting measure
comparable across tasks. Such standardization is necessary both for making comparisons across
tasks and for aggregating task-level data into overall job-wide measures that have meaning in and

of themselves.

The first research objective was therefore, to find a suitable transformation of the performance
time data, to standardize it. A transformation used by the Air Force in previous R&D efforts was
to create a productive capacity (PC) measure from: the performance time data (5) (13) (21). APC
measure is intended to express job performance in terms of how fast an airnien can perform a piece
of work in reference to a standard performaince time. It so happens that formulating a PC measure
from the task perforinance times can standardize the data, giving it broader interpretability. For
instance, the original PC forinulation proposed by Carpenter, Monaco. O'Mara and Teachout. is
1*/t. where t” is the fastest time in which a task can be completed and ¢ is an individual’s raw

performance time (5:21). With this formnlation. PC always ranges from zero to one and can




be interpreted as an individual’s output-as proportion of maximum possible output. Other PC

formulations also provide similarly helpful standardizations and interpretations.

1.3.2 Select a Task Weighting Scheme. ~ The second research objective was to determine
a weighting scheme for assigning differing levels of importance to tasks when aggregating t,ask-leveli

measures into overall job cr aggregate measures

No weighting of the tasks implies that the performance on each task should be allowed to
equally influence overall PC. This was considered a questionable practice since tasks were known
to differ on such dimensions as criticality, learning difficulty, time. required to perform them, and
percent of time airmen spend doing them (40). Since the tasks were known to differ in importance
along such dimensions, it was recognized that one or more dimensions could provide numerical

values to serve as task weights that would help in better defining overall PC.

The second objective was, then, to identify an appropriate dimensicn from which to derive a

task weighting scheme, followed by actual computation of task weights.

1.8.3 Aggregate the Task-Level Data 1ate an Querall Productive Capacity Measure.
The third objective was to determine an appropriate way of computing an individual’s overall
or aggregate productive capacity, using the PC measures computed at the task lex;el. Task-level
performance data can provide some limited insight into airmen job performance, but of ultimate
importance to the Air Fotce is how well airmen perférm overall. This is because Air Force jobs tend
to he multifaceted requiring the performance of a variety of tasks. Jobs may also frequently change
in scope. Because Air Force jobs do tend to require a variety of task skills, task-level performénce
data must be collapsed into overall measures that reflect an airman’s ability to meet a job’s overall,

multifaceted demands.

The third objective was, therefore, to determine and apply a means of aggregating the task-

level data into overall measures of job performance.

-
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1.8.4 Develop Prediction Models. The fourth and most important objective was to de-
velop descriptive regression models for relating task-level and overall PC to the predictors, aptitude
and expet- .ce. The purpose of the regression models was to express how aptitude and experience

appear to eflect PC.

Numerous possibilities existed for the functional form of regression niodels. Possibilities con-
sidered included first-order and higher-order linear models, learning curve-type logarithmic models
and logistic models. The objective was to select a reasonable form for the regression models, de-
pending on the formulation of the PC measure, followed by estimation of the model parameters
using appropriate techniques. As an adjunct to the research objective, the model was evaluated
through residual analysis and through comparison of the model results to other performance mea-

sures and previous studies.

In short, the fourth objective was to select an appropriate regression model, estimate its

parameters and analyze its results.

1.4 Scope.

Under the Productive Capacity Project, Leighton and others collected perforhlance data on
four Air Force Specialties (21). This thesis will concentrate on the analysis of data from one of these
Jjobs, 454X1, Aerospace Ground Equipment. It was limited to the study of a single job to keep the
size of the effort manageable. The methodology developed via this single-job research should find
application in the analysis of the three remaining jobs by the project sponsor, the Manpower and

Personnel Research Division, Human Resources Directorate, Armstrong Laboratory (AL/HRM).

1.5 Assumptions.

Throughout this research effort it was assumed the job performance measures derived from

the supervisors’ task time estimates are valid and reliable. In very general terms, valid means




- ' that the measures accurately measure what they purport to measure—the true job performance of
the individuals studied. In equally general terms, reliability means that the PC measures can be

. R consistently collected. Siegel and Lane (1974) describe reliability as a demonstration that measures

do not fluctuate unduly over timc as a result of something inherent in the test itself
B (including scorer subjectivity), the transitory nature of the function being assessed, -
- S or by factors extraneous to the particular behavior the test is designed to evaluate.

e (37:125) -

1.6 Limitations.

N A;' | A signiﬁcant limitation to this thesis involves £he interpretation and usability of the results. As

o R mentioned, the goal of the thesis is to develop an ezperimental mathematical model for predicting
2\\' '; _ ~ the job performance of enlisted personnel in AFS 454X1, Aerospace Ground Equipment. The

' experimental model is to provide some insight into how the predictors, aptitude and experience,

TR might influence an experimental measure of job performance, PC.

: : | It must l;e stressed that the PC measurement methodology was still in its early stages, and

the current PC measure was previously untested. Also, the model or models developed as part

of this thesis include only a limited number of possible predictors. The results, therefore, are not

¢

appropriate for use in operational manpower decisions or for use in addressing any other operational

- ; concerns. The results are suitable for providing a basis for future research, and for providing very

general ideas about how and which factors might affect job performaﬁce.

1.7 Summary.

The Air Force has recognized that it could benefit from measuring and predicting the job

performance of both its current personnel and its applicants. It has undertaken several research
projects with the aim of developing valid job performance measures. The Air Force’s most recent
T ‘ ¥ R&D efforts have begun to investigate the potential uses of job performance measures in manpower

and personnel decisions, and {orce planning and modeling.




This thesis contributes to the Air Force’s R&D efforts by addressing the job performance mod-
eling phase of the job performance mode! development process (see Figure 1) using data collected
under the Productive Capacity Projuct. The remainder of this thesis documents this research.
Chapter 2 provides an in-depth discussion of background material reviewed as a first step in under-
standing the relevant research issues. It provides an overview of the model development process,
and a chronology of previous research while highlighting those items relevant to the current research ‘
objectives. Chapter 3 descri.bes the research methodology used to prepare the data for analysis,
and further describes how the regression models were estimated. It includes details of the data
editing procedures, computation of aggregate PC measures, and the regression models used. Chap-
ter 4 provides the results and pertinent discussion concerning the research findings. It provides
regression results to include the estimated parameters and relevant statistics of model fit. Chapter

4 also includes correlational analyses of the model predicted values with other job performance

measures. It concludes with a graphical representation of the estimated models. And finally, Chap- :

ter 5 provides a summary of the research, important conclusions and recommendations for further ’

research.
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II. Literature Review

In Chapter 1 it was explained how the primary research objective of this thesis was the
developmént of experimental regress.ion-based models for predicting job perforniance given the
squects’ aptitude and experience. With this in mind, this chapter provides a background of
information relevant to this thesis, couched in terms of 2 modeling scénaric. The‘ review thus

begins with a brief overview of the modeling concept.

2.1 Qverview of Modeling.

Frequently, R&D efforts involve the study and analysis of processes or cystems. Such processes
or systems are often very complex or not well underétood. Usually the analyst desirés to study
a system in order to better undetstand it and to try to specify the relationship b(ev,t.ween system
inputs and outputs.

Understanding of a system is often gained and advanced through development of a maodel
representing the system. According to Law and Kelton, a model is an abstract “representation
of a system developed for the purpose of studying that system.” (20:3). Figure 2 depicts the
relationship between an actual system and the system model. The actual system usually tends to
be»complex and the relationship between the inputs and outputs ié usually not clearly defined or well
‘understood. The system model at;tem[.;t.s to clearly define the system and specifv the relationships

between the inputs and outputs.

it must be pointed out that not all models are good models. Some do not properly represent
the system, some oversimplify the system and some can be as complex as the system itself. In

general, a good model is one which is as simple as possible while still adequately representing the

associated system.
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Figure 2. Graphical Representation of an Actual System Related to a System Model
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(Predictor.s) ' (Estimated Response)

Input1 (x ) —>1 MATHEMATICAL
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Figure 3. Graphical Representation of a Mathematical Model

There are many types of models. These include mathematical models, conceptual models,

' computer models, and simulation models, to name a few. Of primary concern to the current

research were mathematical modeis because these were the type requiring development.

A mathematical model is a model in which the system is represented as a mathematical
relationship between the system inputs and system outputs. In general, a mathematical model can
expressed as in Figure 3.

The black boz in Figure 3 represents the mathematical model which is generally some mathe-
matical function of the input variables. Derivation of the mathematical function relating the inputs

and output generally involves rigorous experimentation and statistical analyses to answer questions

like the following:

1. Which input variables shbuld be included?

2. Should the variables be examined in their original formn, or should they be transformed?

3. How complex a model is necessary? (4:4-6)

Answering questions like those above requires application of one or more mathematical techniques.
One frequently applied technique is regression analysis which is often used in analysis of linear

mathematical models. Linear mathematical models and linear regression are discussed in the

following section.
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2.1.1 Linear Models ‘a‘nd Linear Regression. Linear mathematical models, like all
mathematical models, relate system cut:-ut to inputs via mathematical functions. In !inear models
and most regression applications, the input variables are frequently referred to as prediclors, and
the output is ofwen called the response. Tiie predictors are often referred to as z, and response as

". What distinguishs a linear inodel from other mathematical models is that the mathematical
function relating the response to the predictors is linear with respect to the coefficients associated

with the function’s terms. In other words, a linear model is one that can be expressed as in

Equation 1 (4:36).

}’=ﬂ121+ﬁ222+...+ﬁ,.2p+€ (1)
where
Y = the response
Z1,22,...,2p, = specified functions of the predictor(s), z;
Bi,B2,...,8p = model coefficients, or parameters
€ . = model error terms, representing the deviation of

the system data potnts from the underlying model.

Note that for a model to be linear, it need only be linear in terms of the 3 coefficients. The
functions, Z, need not be linear functions of the predictors. The Z functions are often higher-order
forms of the predictors (e.g., xi) or interaction terms (e.g., ;- 12y) to account for curvature in
the curve or surface defined by the model. The actual specification of the Z functions depends
on the nature of the data and the underlying mathematical relationship between the predictor
and response. The analyst frequently includes various Z functions because of prior knowledge or
hypotheses about the system under study. Also, preliminary analyses and data exploration can

provide insight as to the specification of the Zs.




It is important at this point to make a distinction between mechqnishc and empirical math-
ema;.ical models (4:10-11). A mecﬁanistic model refers to the true underlying mathematical rela-
tionship bgtween the inp'ut.‘and output variables. An empirical model is an approximation of the
true relationship, estimated from data sampled froni the systém in question. Specification of the
actual mechanistic model is almost always impossible or impractical due to sﬁch things as mea-
surement and sampling error, and limited data. Therefore, it is usually the goal of the analyst to

derive an empirical model nusing a sample of system data.

Given a linear mathematical model of the form expressed in Equation 1, linear regression

analysis is frequently performed to aid in deriving the empirical model. Linear regression is a

]
techrique for obtaining estimmates of the J parameters, given a set cof predictor and response data.
o

i
After estimation of the parameters, an empitical linear mathematical model can be expressed for
f .

. . |
the system in question. J

Neter, Wasserman and Kutner describe rfgression models as serving three primary purposes
(27:31). These are description. control and prf‘:diction. To use a regression model for description
means t;) estimate the model parameters so that the rel;ationship between the variables can be
specified and the model can thus be used to describe the system. To use regression models for control
means to specify the relationship between the predictors and response so that system specifications
can be adhered to. Finally, as the name implies, prediction means the use of regression models to
predict or forecast: the system response given known levels of the predictors. The bthrve purposes
may overlap in a given study. It was previously mentioned that the Air Force would like to develop
models for prediction of airman job performance. This thesis was designed to contribute to the
model de\'elopmem process by developing regression models more for descripfion than prediction.
Development of such descriptive models is an integral part of the model development process as

efforts are made to better understand the nature of the relationship between potential predictors

and the response.
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The most common method of obtaining estimates for the § parameters in linear regression
is the method of least squares. In least squares, the model parameters are estimated such that the
resulting equation they define represents a response curve or surface that minimizes the sum of the
squared distances from the actual data points to the curve or surface tliat Iis estimated. Application
of linear regression requires the assumptions that the values of the predictor variables for a given
set of data are known constants, and also that the 3s are constants that require estimation. Linear
regression further assumes that the model error terms, ¢, are independent random variables that are
distributed such that they have a mean of zero. That is to say. given a fixed level of the predictors,
on repeated sampling, the error is assumed to be distributed such that its mean is zeto. This means
that the expected value of the responsé, Y (denoted E(Y'))is 17y + BaZ2 + ...+ PBpZp since the

Bs and Zs are constants.

Least squares is concerned with minimizing the squared distance between each observed Y
and the its expected value, £y Z) + 32224 ...+ B8, Z,.- The equation to be minimized in least squares

is expressed in Equation 2 (27:39).

"
Q=) (Y= 320220 — .= BpZy) (2)
i=1
where i
Q = the expressed sum
i = observation number
n = tolal number of observations
¥ = the response for obsertation i
Zyi, 2y ..., 2, = spectfied functions of the

predictor(s) for observation 1

By, B, ..., 3p = parameters 1o be estimaled.




Equaiion 2 is minimized with respect to the s using standard calculus minimization tech-
niques. The minimization yields the least squares estimators for the 8s. The estimators are
frequently reférred to as the @s. Least squares estimators, or fs, have the appealing property of
being minimum variance, unbia.Sed estirnators of actual fs. Having computed the s, the empiri-
cal regression model can be stated and the system response can be estimated, or predicted, given

specified levels of the predictors. The estimated response is frequently referred to as Y.

It was previously melxtioﬁed that it was assumed in linear regression, that the erro, terms, ¢,
were distributed for a given level of the predictors, such that their mean is zero. It is often further
assumed that the € not only have a mean of zero, but are normally distributed with mean zero and
variance 6% (¢ ~ N(0,0?)). The normality assumption allows certain statistical inferences to be

made concerning the regression results.

Prior to discussing statistical inferences about the regression results, the followiné discussion
is included to show that the assumption of error terms being distributed N(0,¢2) implies that the
Y's are likewise distributed normally. This result has a direct impact on the statistical inferences
which can be made. Consider Equation 1 and assume ¢ ~ N(0,0?). Since the predictors and the
model parameters are constants, ¥ can be shown to be distributed with variance o2, the same
variance as the error term. Since the predictors and the parameters are constants, let the right-
hand side of Equation 1 be expressed as ¢ + €. Next, let the variance of Y (denoted as V(Y')) be
written as V(¢ + ¢) which equals simply V(e). It follows then that V(Y) = V(¢) = ¢°. Further,
since it is assumed that ¢ is distributed N(0,0%) and that ¥ = c+¢, ¥ not only has a variance o2,
it is distributed N(c.o?).

The assnmpl ion that the error terms, ¢, and thus the ¥'s are normally distributed is important
when making inferences concerning the @s. Since it can be shown that the s are lincar combina-
tions of the ¥'s. the 3s are likewise normally distributed. This fact means that the t distribution

can he used 1o make inferences about the 8s. The following discussion of inferential statistics
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commonly used with linear regression is an overview of the more in-depth coverage given by Neter,

Wasserman and Kutner (27).

Following linear regression, it is common to test whether a given 8, is significantly different

from zero. Following are the null and alternative hypotheses for such a test.

Hg:ﬁk:O

Ho:Be #0

The test statistic {p is computed as {p = 0_%;_ where &(ﬂ}) is the estimated standard error
k

of B¢. The decision rule for deciding the outcome of the test is as follows.

If lto} < t(y-as2:r-p), conclude Hy

If {tol > t(1-a/2.n—p), conclude Hy

Here, a renresents the preselected probability of Type I error, which means a is the probability
that H, will be concluded when Hy is true. Also, n is the number of cases on which the regression

is based and p is the number of 8 parameters iucluded in the model.

Enroute to discussing further statistical tests of regression results, it is necessary to introduce
the concept of sums of squares. The sums of squares concept involves the partitioning of the sum
of the squared deviations of the Y's from the average ¥, ¥. The sum of the squared deviations of

the Y's from Y is referred to as the tetal sum of squares and is expressed in Equation 3.

SSTO =3 (Y, - ¥)? (3)

=

where




Y,
~
-
.
e
L
e
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-
. i -
-0 ~
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SSTO

I

I

i

total sum of squares
observation number

total number of observations
the response for observation i

the average response

The total sum of squares can be viewed as a measure of total variation of the Y's from the-

mean response (27:87). SSTO can be partitioned into two pieces, sum of squares for error and sum

of squares for regression. These are expressed in Equation 4 and Equation 3, respectively.

n .
SSE =} (¥ - Vi)’ )
i=1
where
SSE = sum of squares for error
i = observation number
n = total number of observations
Y; = the response for observation i
Yi = the estimated response
hid -
SSR=) (¥, -¥) (5)
[E-3 :
where
19
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SSR = sum of squarés for regression

i = observation number

n = tolal number of obseﬁations :

Y = the estimated response for observation i
Y = the average response

The sum of squares for error represents a measure of variation of the observed data with
respect to the estimated model. The sum of squares for regression represents the variation of the
estimated response values with the meanb response. Again, note that the total deviation of the
response from the average response {SSTO) can be partitioned into the deviation of the observed
response values from the estimated response values (SSE) and the deviation of the estimated

response values from the mean (SSR). Equation 6 and Equation 7 summatize the relationship

between SST'O, SSE and SSR (27:87-89).

SSTO = SSE + SSR _ (6)

Yi-P) =S -7+ Y (vi-¥%) | (7)

i=1 i=1 =1

where
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i = observation number

n = lotal number of observations
Y;-Y = total deviation
Y;-Y = deviation of estimated response

around mean
Y=Y, = deviation of observed response

around estimated response.

After computation of the sums of squares, mean squares can be computed. The mean squares
for regression (M SR) and mean squares for error (ML ™) are computed by dividing the ass.ociated
sums of squares by their corresponding degrees of 'freedom (df). Degrees éf freedom, in general
terms, refers to tixe number of opportunities in whi.ch variab.ss are iree to vary, given a sei of data.

l For instance, SSTO has n~1 df, where n is the ngmber of observations in the sample.' One degfee
of freedom is lost because the deviations Y; — Y must, by definition, sum to zero. This meéns
that n — 1 Y observations are free to vary, leaving the last observation no freedom to vary. It
can be equivalently stated that one degree of freedom is lost because Y was used to estimate the
true system mean (27:91). For SSE, there are n —p degfees of freedom, where p is the number
of parameters atimg;eq. WOne degree of freedom is lost for each estimated parameter. SSR has
associated with it p — 1 df. There are p parameters in‘the model but one degree of freedom is lost

- beca;lse, by definition, the deviations Y. — Y must sum to zero. Thus, p— 1 parameters are free
to vary but the last one is not. Equation 8 and Equation 9 show the computations for M/ SE and

M SR, respectively.

SSE
n-—p

MSE =

where
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MSE = mean square for error

SSE = sum of squares for error
n = the number of observations in the sample
P = the number of paramelers included in the model
n—p = the degrees of freedom for associaled sum of squares (SSE).
SSR
MSR= — 9)
p-1 _
A where
MSR = mean square for regression
SSR = sum of squares for regression
P = the number of parameters included in the model
p—1 = the degrees of freedom for associaled sum of squares (SSR).

Having computed the mean squares, a common statistical test for overall regression relation
can be performed. This test makes use of the fact that given the previous linear regression model
MSR

assumptions, the value y72F is disiributed according to the F distribution. The null and alternative

hypotheses for the test are as follows.

1101/3['—‘/32:...:[],,_1:0

Hy:notallthe 8 (k=1,....p-1)=0

Again, n is the number of cases included in the regression and p is the number of parameters

included in the model.
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Table 1. General‘ANOVA Table for a Linear Regression Model

Source of ‘
Variation SS df MS Fo
Regression SSR=T0,(li =) p=1 MSR= 38 Fy= bS8

Error  SSE=Yi_,(Yi-Y)? n-p MSE=2E

Total  SSTO=Y1_,(Yi-¥)® n-1

The test statistic Fp is computed as Fy = %’,—g—g where M SR and M SE are the model mean

square for error and mean square for regression, respectively. The decision rule for selecting a

hypothesis is as follows.

If Fo S F(l-o;p~1'n-p), conclude Ho

e If Fo > F{y~aip=1,n-p) conclude H,

s b ' The F test for regression relation serves primarily to determine whether any of the predictor
- ~ variables, in their proposed format, are providing any statistically significant prediction of the
s N : response variable.

Y After computation of the sums of squares, mean squares and the F statistic for overall re-
e gression relation, linear regression results are frequently summarized with an analysis of variance

(ANOVA) table. An ANOVA table is presented in Table 1.

Recall that the above statistical tests require the assumption that the error terms, ¢, are
: independent random \;ariables distributed N(0.0°). The assumption of normality of the error terms
i is frequently tested through analysis of the residuals. Residual is another name for the deviation
of an observed response from its predicted value, ¥; — ¥i. (Residuals are often denoted as e.)
- Residuals ére frequently analyzed to determine the aptness of the proposed regression model. The

error terms (¢ = Y; — E(Y;)) themselves cannot be analyzed because the true mechanistic regression




model (E(Y;)) is unknown and thus the error terms are unknown. To analyze the residuals, they
are frequently plotted against the estimated response values and the predictor variables. These
plots indicate whether the variance of the residuals (and thus the variance of the error terms) is in
fact constant (02) over varying levels of the other variables. Such constancy of variance is called
homoscedasticity. A plot of the residuals against the expected residuals given a normal distribution,
is also frequently plotted. This is called a normal probability plot and, as the name implies, will

indicate whether the residuals (and thus the error terms) appear normally distributed.

If, after residual analysis, it appears that the estimated regression model is not apt, often
either the predictor variables or the response (or both) can be mathematically transformed to make

it so. Neter, Wasserman and Kutner discuss several such transformations (27).

As mentioned previously in the discussion of general modeling, not all models are good models.
In linear regression, the goodness of model fit is frequently assessed through the statistic R?. R?
is called the coefficient of multiple determination and is interpreted as the proportion of variance
in the response that is explained by the estimated model. The computation for R? is shown in
Equation 10. A high R? indicates the estimated empirical model fits the data well and thus may

provide reasonable prediction results.

., SSR SSE
R =576 =1 5570 (10)

The above tests and statistics illustrate only some of the more common descriptive and
inferential statistics applied to linear regression results. While there are numerous other tests those

discussed above are employed throughout this thesis and thus required review at this time.

The previous discussion of linear mathematical models and linear regression explained how
model parameters are estimated and how statistical inferences can be made concerning the regres-

sion results. The previous discussion assumed that a suitable regression model was used. Con-
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"structing a suitable linear regression model can be a very involved process. Neter, Wasserman and

. Kutner describe the model-building process as involving the following four phases (27:433).

i. Data collection and preparation.
. ‘ 2. Reduction of the nufubef of predictor variables.
: 3. Model réﬁnement and selection.

4. Model validation.

B : ‘ " These four phases are graphically depicted .in Figure 4 (27:434). Note the relationship between

| . - f~_‘.‘~ - Figure 4 and Figure 1 which represents the job performance model development process. Collaps-

A - ing the second and third phases of Figure 4 into one phase would make the two figures highly
\\ comparable. This means that the process for developing a mathematical job performance model
i ‘ is virtually the same as the process for developing any linear regression model. This process can

generally be extrapolated to any mathematical model development.

P The first phase of the regression model building process, data collection and preparation,
involves the gathering of the data, preferably through some designed experiment which will yield
the type of data needea to answer the research questions. Following collection of the data, the data
- \ ~ must be prepared for analysis. Data;.preparétion may involve screening out any predictor variables
o which are not fundamental to the pfoblem, which are subject to large measurement ertor, or which
duplicate other predictors (27:435). Dla.t.a preparation also invol;crasr edrit.ibr;g §f the data toremo;e

any gross data errors, and identification of any extreme outlying observations which can adversely

influence regression analyses. Useful tools for identifving data errors and outlying cases include

i WO
. SIS SRR
s b T .
1 B

‘'scatterplots, histograms and frequency distributions of the predictors and response.

. The second phase of the model building process involves the reduction of the number of
. v ) predictor terms. Once the functional form of the regression relation has been decided upon {whether
! - the predictor or response variables are to appear in linear form, quadratic form, logarithmic form,
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Figure 4. Strategy for Building a Regression
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etc.), the next step is to select a good subset (or subsets) of the predictor terms (Zs) (27:43)..Recall
_from the previous general discussion of modeling, a good miodel is one that not only adequately

represents the underlying system, but is also as simple as possible. This is the reason for reducing the

number of predictor terms, if possible. One common technique for reducing the number of predictor

terms is stepwise linear regression. Stepwise regression is an automatic search procedure that
sequentially develops the subset of predictor terms to include in the model. In very general terms,
stépwi,se regression sequentially adds the predictor terms to the regression model and computes
the statistical F test for overall regression relation. Predictor terms are added to or removed from
the model based on whether their associated computed F statistics, considering other variables
currently included in the model, exceed or fall below prespecified F étatistic criteria (27:453-454).
Stepwise rggression can be an efficient way of obtaining a single, parsimonious (simple) regression

model.

The third phase, model refinemezt iad selection, involves study and improvement of the
model(s) resﬁlting after reducing the number of predictor terms. In this stage, the data are checked
in detail for overlooked evidence of curvature and interaction effects. The model assumptions are
checked through residual analysis, and diagnostics are performed to identify such things as severe
outlying observations (27:437-438). Also, remedial measures such as data transformations are made
if necessary. The result of this phase is the identification of a single model which most adequately

and parsimoniously represents the system under study.

The last phase of the model building phase is model validation. Model validation involves the
assessment of the model in terms of its generalizeability to the overall system, and not just to the
data from which it was created. Model validation usually involves checking the model against new

data, theoretical expectations, earlier results or simulation results (27:465).

Having provided a general overview of modeling with emphasis on mathematical models,

and namely linear models, focus will now tarn to the Air Force's most recent R&D concerning
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the measurement and subsequent modeling of airmen job performance. First, however, the next
section will provide the reasons that the Air Force is interested in job performance measurement

and modeling.

2.2 Air Force Interest in Job Performance Research.

2.2.1 Air Force Interest in Measuring Job Performance. » Aside from the need to
obtain job performance measures for modeling, there are other reasons thai virtually all large,
success-dept it organizations are interested in measuring the‘job performance of their personnel.
The first chapter mentioned some operational and congressionally-mandated requirements which
sparked the Air TForce’s interest in measuring job performance. Wayne Cascio provides the following

reasons that organizations in general are interested in having job performance measures(6:74).

1. Performance measures can serve as a basis for making personnel decisions such as who to fire,

who to reward, and who to promote.

2. Performance measures can be used as a criteria for assessing the impact of any number of

personality or situational variables on job performance.
3. Performance measures an serve as predictors of future performance.
4. Performance measures car help assess training programs and establish training objectives.
5. Performance measures can provide feedback to employees.
6. Performance measures can help in diagnosing and developing organizations.

The Air Force is interested in measuring job performauce for these reasons as well. What Cascio
is saying is that job performance measures can give an organization the abili' to improve its
manpower and personnel systems and practices in numerous ways. Coupling Cascio’s reasons with
operational requirements like those discussed in Chapter I provides the Air Force with several

compelling reasons to pursue job performance measurement research.
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2.2.2 Air Force Interest in Modelhng Job Performa'ncc.- Like measuring job performance,

most organizations are interested in modeling, for prediction purposes, the job performance of their
incumbent personnel and those individuals who have not yet joined the organization. The Air Force
can certainly be counted among the organizations interest,ed‘in médeling performance. Much can
be gained by predicting the future performance of applicants. Such prediction could help in the
hiring, or enlistment, process. If the Air Force could assess al;ead of time who is likely to be most
productive or successful, it could ensure that such individuals are enlisted, while avoiding those

who are least likely to be productive.

On a grander scale, the modeling of job performa_nce could be useful in manpower planning.
Predizted job performance resulting from models, could be used as a basis for allocating personnel
to various jobs according to some desired goal. For instance, if the Air Force could predict job
petformance, it could assign its personnel to ensure that maxiinum possible levels of productive
capacily, or readiness, are obtained. Simply put, the ability to predict job performance can hélp

an organization to make optimal u: 2 of its personnel resources.

2.8 Air Force Measurement of Job Performance.

Prior to reviewing relevant job performance literatute, job performance models must be
couched in terms of the previous modeling discussion. . Figurce 5 illustrates a mathematical job
performance model using 'the same type of graphical representation shown previousiy. In model-
ing job performance, the svstem is in essence, a typical worker (in the current research, a typical
airman). The inputs are the many factors known to influence a worler's job performance. The
output, or response is the worker’s actual job nerformance. The system (worker) is modeled as a
mathematical function. In the mathematical model of job performance, the inputs are known levels
of selected predictors. The output, or estimated response, is an estimate of some measure of job

performance.
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Figure 5. Graphical Representation of a Job Performance Model

It is important to note that to build a imathematical job performance model, or any math-
ematical model for that matter, sound measures of the response must be obtained. It should be
obvious that for a job performance model, job performance is the response and job performance
measures must be obtained. It will be shown that the development and collection of valid and reli-
able job performance measures can be a very involved process. Prior to discussing the Air Force's
development of job performance measures, the next section provides an expanded definition of a

job performance measure, and definitions of other key terms in job performance measurement.
2.3.1 Definitions.

2.8.1.1 Job Performunce Measure. A job performance measure is a criterion used

to assess the quality or amount of work completed.

The term job performance measure generally refers to the formal, valid measurement criteria

used by individuals who have a professional interest in assessing and quantifying work performed on
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a particular job. Job performance measures are generally not associated with informal subjective

assessments or oninions concetning work completed.

Although job performance measures can tileoretically be used to evaluate work done by indi-

vidual workers, groups, or machines, they are usually applied to individual workers.

There are numerous possible schemes for classifying job performance measures. An important
scheme that will be considered in this thesis classifies measures as quality-based or quantily-based

job performance measures.

2.3.1.2 Quality-Based Measures. Quality-based job performance measures are
those measures which reflect how well work is accomplished.. Quality-based measures include such
things as subjective ratings of the quality of work, or the percentage of steps performed correctly

while completing a task.

2.3.1.83 Quantity-Pased Measures. In contrast to quality-based measures, quantity-
based measures of job performance are those that are concerned with kow much work is accom-
plished, referenced to time. Son‘1e examples of quantity-based measures include the number of parts
made per hour, or just the time it takes to complete a job task. It is generally the case for quantity-
based measures that more is betfer. In other words, shorter work completion times are desirable.
Shorter work completion times equate to higher worker'output rates. This is obviously desirable

for an organization provided the greater worker output is not at the expense of the worker.

The distinction between quality-based and quantity-based measures is important to thz Air
Force. This is because although the Air Force is interested in both quantity and quality, quantity-
based imieasures seem to be more frequently used in most Air Force force manpower modeling and
planning. The reason is that overall work oufpuf is usually the object of interest in planning and
modeling exercises. For instance, the Air Force currently focuses on such readiness measures as

sortie generation rates and mean time to repair aircraft. Only quantity-based job performance
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measures contain the work output information needed to assess such readiness measures. But the

Air Force realizes that quantity, without quality considerations, is not sufficient or desirable. Thus,
there usually is a simultaneous interest in quantity and quality. This is especially true of the Air

Force and most production-oriented organizations.

The Air Force’s most recent job performance measurement research, under the Productive
Capacity Project, has focused on quantity-based measures with an attempt to build into these

measures, at least a minimum acceptable quality consideration.

2.3.1.4 Quantily/Quality Tradeoff. There is a commonly accepted notion of a
quantity/quality tradeoff when performing work. The notion is that, all things being equal, the
quality of work will decrease as the available time to put into the work decreases. Or similarly, the
amount of time to complete a piece of work will increase as the attention given to quality of the

work increases. It is believed that quantity and quality are directly reiated.

This tradeoff suggests that it is possible to allow too little time to complete a piece of work such
that the quality of the work would be too low, or unacceptable. Or similarly, inordinate attention
to work quality can increase the work completion time making it too long, or unacceptable. It
is desirable, then, to somehow account for quantity when collecting quality-based measures, and

quality when collecting quantity-based measures. This is to ensure a’ least minimum acceptability.

As previéusly mentioned, the Air Force in its Productive Capacity Project has attempted
to build a minimum acceptable quality standard into its quantity-based measures. This is ac-
complished by phrasing the job performance measurement question as, “How long does it take
to complete a piece of work while ensuring some acceptable level of quality? (The actual data
collection format and instrument will be discussed in Section 2.3.2.5.) For quality-based measures,
quantity can likewise be accounted for by asking a measurement question like, “How well can the

work be completed in some acceptable (or fized) amount of trme?”
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The built-in quality considerations are the Air Force’s current method for addressing the

quantity/quality tradeoff when collecting its quantity-based measures.

2.3.1.5 Productive Capacity. Productive capacity (PC) is a quantity-based job
performance measure that represents the maximuin amount of work output a given person is

capable of producing on a particular job or task (21).

Productive capacity is to be distinguished from productivity. Productivity generally refers to
how much output pedple typically yield on a normal, day to day basis. Productive capacity on the
other hand, represents the amount of work people are capable of producing if they work to their

full potential.

The distinction between productive capacity and productivity is important when attempting
to identify the factors affecting performance. It is quite possible, if not likely, that factors aflecting
productive capacity are not the same as those affecting productivity. Several recent studies have

supported this theory.

The distinction between productivity and productive capacity was indirectly addressed in
a study condgcted by Sackett, Zedeck and Fogli (1988) (34). They made a distinction between
typical and marimum performance. Typical performance generally refers to average or long term
performance, while maximum performance refers. to the petforma‘n”c.e“ yesulting when maximum
effort is given. Sackett and others found low correlation between typical and maximum performance
of supermarket check-out clerké. Their findings suggest that a low correlation would likely exist
between productive capacity, arguably a measure of maximum performance, and productivity, more
a measure of typical performance. The expected low correlaﬁon implies that PC and productivity

are measuring different aspects of job performance, and would likely be related to different factors.

2.3.2 Background Liferature on Job Performance Measurement in the Air Force. As

mentioned. several operational. practical and congressionally-mandated requirements initially gave
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the Air Force motivation to rather aggreséively pursue job performance measurement research.
Recently, it has been the Air Force's desire to develop job performance models that has perpetuated
the motivation and research. As previously discussed, measures of job performance are required in
the development of mathematical job performance models. Following is review of the Air Force’s
research efforts to develop sound measures of job performance for meeting requirements and for
development of job performance models. Two primary research projects are rgviewed, the JPM

and Productive Capacity Projects.

2.3.2.1 The Joint Service Job Performance Measurement Project. In response to
the 1983 congressional mandate to link job performance and enlistinent standards, and for numerous
operational reasons, the armed services began a joint research and development project in the early
1980's. The purpose of the project was to explore valid job performance appraisal techniques.
The research was coordinated across the armed services to insure a common direction of effort, to
avoid duplication of effort, and to facilitate technology transfer between the services. The research
project is known as the joint-service Job Performance Measurement/Enlistment Standards Project,

or simply the Job Performance Measurement (JPM) Project.

2.3.2.2 The Air Force's Job Performance Measurement System Project. As part of
the broader JPM Project, the Air Force began its similarly-named Job Performance Measurement
System (JPMS) Project (16). As the name implies, the JPMS Project’s primary purpose was to
develop or identify a job performance measurement system that is valid, meaning it would consist
of measutes that accurately reflect how well a job is performed. As expected, this proved to be a

challenging task.

The Air Force developed various job performance measures including hands-on petformance
tests. interviews, written tests, and supervisor, peer, and self ratings (3) (15) (16) (23). The primary
performance measure developed under the JPMS Project was the Walk-Through Performance Test

(WTPT) consisting of a hands-on work sample test and an interview portion (15).

3




The JPMS measures were eventually applied to airmen in eight Air Force Specialties (AFSs)
between 1982 and 1987. The results of the JPM project are thoroughly documented by Laue,
Teachout, and Harville (1992) and in numerous technical papers produced by the Techinical Training

Research Division, Human Resources Directorate, Armstrong Laboratory (19).

As the 1980s ended, the JPM Project, at least for the Air Force, drew to a c}ose. How-
ever, there were no plans to opérationally implement the JPM measures because of the cost and

practicality problems addressed in the next section.

2.8.2.3 Problems With th.e Air Force’s Job Performance Measurement System Mea-
sures. Despite the success of the JPMS Project in developing sound methods for measuring job
performance, the JPMS measures have somevproblems which‘limit their broader use in manpower
modeling. For instance, consider the Walk-Through Performance Test of the JPMS Project. De-
spite its attractiveness and validity as a work-sample test, it is very expensive and !.ime consuming
to develop and administer. This is because of a high degree of job and task analysis required, and be- -
;:ause ofa l'reqhent need to access subject matter experts (SMEs), usually senior non-commissi'oned
‘officers (NCOs). It also requires travel to Air Force bases for access to examinees. Further, it is
intrusive in that the test must be set up and administered in the actual"\vorkplace. Finally, it
requires several h-oms of the gxaminees’ time, which means they must be absent from their daily

duties. These factors significantly lower the utility of the easure for any kind of widespread use. - -

A second problem with the JPMS measures is that they are in a form that is not very useful
for manpower planning (21:3). The measures are quality-based, generally in a form representing
percent correct on a performance test, or a performance rating on an quality-anchored rating scale.

Such quality-based measures have obscure interpretations in manpower decisions which require

work output information (21:3).




Another research effort conducted during the JPM time frame introduced another job per-
formance measure, called productive capacity, which seemed to be free of many of the troubles of

the JPM measures. A discussion of this initial PC research follows.

2.3.2.4 Inttial Productive Capacily Research. Carpenter, Monaco, O'Mara and
Tea;hout (1989) conducted regearch for the Air Force during the same time period as the JPM
Project, to explore the feasibilit.y and utility of a novel job performance measure called productive
capacity, or PC (5). As defined earlier, PC is a quantity-based job performance measure that
represent.s the maximum amount of work output a given person is capable of producing on a

particular job.

Carpenter and others mathematically defined productive capacity as t*/t, where t* is a stan-
dard, representing the fustest possible time in which a given piece of work can be completed. Also,

i represents the time, on average, it takes the individual under assessment to complete the work.

'

The researchers investigated whether FC ratings could be effectively provided jBy Air Force
i

supervisors. Their research involved personnel in career field 328X0, Avionics Commr‘unications.

Prior to collecting data on experimental subjects, benchmark times were assigned to clusters
i

'

of tasks representative of the job, by subject matter experts. The benchmarks represented SME
|
estimates of the average amount of time it would take a first-term airmen to comp]ete the task

cluster. The benchmarks were then provided to Air Force supervisors who used them to estimate

work completion times for their personnel.

The PC data collection went as follows. Supervisors selected one of their workers whom they
believed worked closest to the benchmark pace. They then estimated how long it would take each of
their other workers to complete the same amount of work that the benchmark worker could perform
in one hour. This was done for each task cluster. The t* values were oltained by subtracting one

minute from the fastest estimated time for each task cluster.
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To validate the supervisor estimate technique, the researchers collected more objective per-
formance data using WTPT methodology, for comparison. Correlations between supervisor ratings

and the objective measures were low to moderate.

Overall, the research indicated the supervisor estimate methodology for obtaining productive

capacity data had promise. This is true especially when considering the‘ cost and time-consuming
nature of empirically deriving t* and t values by actually timing airmen while they perform job-
related tasks. Unfortunately, the study indicated that more development of the productive capacity

measure was needed.

This research had several associated problems. The ﬁfst problem was the use of a benchmark
worker as a basis for comparison when subervisors made their time estimates. Because supervisors
selected unique benchmark workers (from among their own subordinat&s)‘, there was to some degree,
a floating reference point between supervisors when estimating performance times. This may have

introduced bias into the ratings.

Second, th: PC measures were computed from time estimates that were reflective of an
individual’s performance on average. The PC measures derived from these times do not reflect true
productive capacity, but average productivity. This deviates from the definition of PC as previously

expressed.

~ Athird problem.was that only a single benchmark time was used by supervisors when selecting
their benchmark worker, and indirectly when making their time e;stimates. The single benchmark
represented the average amount of time it takes a first term airman to complete work. The problem
with a single benchmark is that it says nothing about the variance and distribution of performance
times. This paints an incoinplete picture of the range of performance times that might be expected
across individuals. Supervisors probably used their own assessments of what the distribution of

performance times was like and further biased the ratings.
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A fourth problem was that the study locked at only une job. It is difficult to comment on
the utility of the PC measure for widespread use without looking at its performance in a number

of AFSs.

2.3.2.5 The Productive Capacily Project. As the JPMS Project and initial PC
research drew to a close, the Air Force recognized that many operational ’and modc'ing needs for
valid job performance measures would remain unsatisfied. The JPMS measures were useful in
fulfilling the congressional mandate, and the initial PC research demonstrated the potential ofa
new measurement technique. But neither effort provided a valid and efficient measure suitable for
broader use in addressing operational concerns and in development of job performance n odels. The

Air Force realized it must conduct further research to develop a measure that could better satisfy’

its needs.

The Air Force reviewed its performance measurement research and determined tha- it would
pursue the development of the PC measure over any of the JPMS measures. This is beccuse PC
offers the most overall promise. The PC measure seems to counter the problems associatec with
the JPMS measures in that it is relatively inexpensive to implement, it is quantity-based, and thus
can be meaningful when making manpower decisions. Also, the PC measure as origirally defined

seemed to leave room for significant improvement.

As a result, the Air Force began its Productive Capacity Project, with the goal of improving
the PC measure so that it couid be used to address operational concerns and to serve as basis in

manpower modeling.

The first effort of the Productive Capacity Project was an attempt to address the problems
associated with the initial PC measure (21). Instead of having supervisors use a henchmark worker
as a reference when estimating performance times, the researchers had them use time-anchored
rating scales derived from subject matter experts as the reference. Next, supervisors were not

asked to estimate individuals’ typical or average perforinance times. but their fastest possible
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pérformance times. And, as an alternative to providing supervisors with only a single benchmark
refgrence time, the time-anuchored rating scales used had multiple benchmarks per. itfdividual task.
The benchmarks represented estimates of the fastest time in which the task could p‘ossibly be
completed, the .average time it would take a first term airman to complete the task, and the longest
time that an airman would be allowed to work on the task without negative consequences to the
job. Last, the researchers studied four Air Force jobs to provide a broader view of the PC measure’s -

effectiveness.

The reader is referred to Measurement of Productive Capacity: A Methodology for Air Force
Speciallies, for a complete description of this PC research (21). Because the PC data collected by
Leighton and others for AFS 454X1 will be used for the analyses in this thesis, following is a fairly

detailed overview of the research.

An early issue for the Leighton and others was the selection of j;)bs to be studied. The first
job selection consideration was the aptitude category into which jobs are classified. Th_e Air Force
uses a 10-subtest paper-and-pencil test called the Armed Services Vocational Battery (A"VAB) to
select recruits for service, and then to p)ace them into jobs. Air Force jobs can be classified into
four categories corresbonding to four ASVAB éomposite scores The job t.}"pef and corresponding
composite scores are Mechanical (M), Administrative (A), General (G), and Electronic (E). ‘The
composites are referred to as abtitude indices (Als), and theoretically measure aptituae in their
named. area. Each Air Force job is associated with at lez;st oﬁe Al, by the nature of the work
performed in the.job. There are ininimum Al cutoff scores that individuals must exceed to enter

the various job types (8).

To assess the utility and validity of the PC measure across a variety of jobs, the researchers
opted to select one job from each aptitude area for the study. They also chose to select from among
the eighi jobs analyzed under the JPMS Project. This was to take advantage of the extensive task

analysis information previously compiled. Also, the four jobs studied latest in the JPMS Project.
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Table 2. Air Force Specialties Selected for the Initial Study of the Productive Capacity Project

Specialty Code | Specialty Name ASVAB Aptitude Index
122X0 Aircrew Life Support General (G)
454X1 Aerospace Ground Equipment Mechanical (M)
455X2 Avionic Communications and Navigation Systems | Electronic (E)
732X0 Personncl Administrative (A)

Table 3. Number of Tasks Selected for the Initial Study of the Productive Capacity Project

Specialty Code | Number of Tasks
122X0 45
454X1 50
455X2 41
732X0 36

were given preference because written job knowledge tests were created for them (3). These JKTs

were identified as potentially useful measures for PC validation.

A last consideration in job selection was the availability of airmen to serve as experimental

subjects. After consideration of all factors, the four jobs listed in Table 2 were selected.

(Under the JPMS Project, 455X2 appeared as 328X0, Avionic Communications. The 455X2 title

reflects the combination of AFSs 328X0, 328X1, and 328X4. Similarly, 454X1 appeared as 423X5.)

After selecting the jobs, the analysts were faced with the issue of selecting which tasks from
within the jobs would be studied. As with the JPMS Project’s Walk-Through Performance Test,

the task level was chosen as the appropriate level of job Jetail for collecting the PC data.

Tasks from the WTPT were highly desirable candidates for the PC research because they
were very well articulated and broken down into great detail as part of the WTPT development.
Unfortunately, there were not enough \WWTPT tasks generalizable to all positions within a given
AFS to provide an overall view of an individual’s PC. The researchers subsequently selected addi-
tional tasks from task inventory data collected by the Occupational Measurement Squadron (OMS).

Randolph AFB, TX. The final numbers of tasks are listed in Table 3.
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Table 4. 454X1 Job Duty Areas

Duty
Area | Description

A Organizing and Planning
Directing and Implementing
Inspecting and Evaluating
Training
Performing General Administrative Tasks
Performing Preoperations or Service Inspections
Performing Periodic Inspections
Maintaining AGE Electrical or Electronic Systems
Maintaining AGE Engines, Motors, or Generators
Maintaining AGE Heating Systems
Maintaining AGE Refrigeration Systems
or Equipment Coolers
Maintaining AGE Test Stand, Bomblift, or General
Servicing Hydraulic Systems
Maintaining AGE Pneumatic Systems
Maintaining AGE Enclosures, Chassis, or Drives
Maintaining Mobile Tactical Air Control Systems
Equipment
Dispatching AGE
Maintaining Special Tools or Shop Equipment
Performing Quality Assurance Tasks
Performing Nonpowered AGE Maintenance
Performing Cross-Utilization Tasks
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Job tasks are typically coded! by OMS (40). Task codes consist of a letter prefix and a

numeric suffix. The letter prefix idJntiﬁes which job duty area the task is from, and the numeric
suffix differentiates tasks within the duty areas. Because data for AFS 454X 1 were anulyzed in this
thesis, Table 4 which lists the 454X1 job duty areas and Table 22 at Appendix A which lists and

describes the 50 454X1 tasks analyzed were included (40).

The task descriptions in Table 22 at Appendix A do not exactly match the descriptions
maintained by OMS. The task descriptions had to be modified for the Productive Capacity Project
to clearly define a task by specifying exact equipment and precise starting and stopping points so

that accurate completion time estimates could be made.

After task selection, the researchers had to establish benchmark times for the tasks. The

benchmarks were needed for the creation of the rating scales to be used by the supervisors in
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estimating the work coinpletion times of their subordinates. Three benchmarks were derived for
each task. These represented the tastest time in which the task could be completed, the average
time it takes a first term airman to complete the task, and the longest time that an airman would

be allowed to work on the task without significant consequences to the job.

To get these benchmarks, six SMEs from each job were assembled for workshops at Brooks
AFB, TX. The workshops for each job were held separately. During the workshops, the SMEs were
presented the task 1'sts corresponding to their given jobs. The Nominal Group Technique (NGT)

was used to reach consensus among the SMEs for each benchmark for each task (14).

A detailed analysis of the interrater agreement of the SMEs when providing the benchmarks
was accomplished by Skinner, Faneuff, and Demetriades (1991) (39). Overall, they found that there

tends to be very strong agreernent among SMEs when estimating the benchmarks.

To gain access to supervisors and airmen to serve as experimental subjects, it was necessary
for the researchers to visit a number of Air Force bases. The primary considerations in selecting

the Air Force bases included the following:

o The number of potential subjects available at each base

o Base location (Continental U.S or overseas)

o Base mission (training, classified, etc.)

The researchers determined that 10 bases would be visited. The bases are listed in Table 5.

A sample size of 200 airmen per AFS was targeted. This was the maximum number that
could be tested given project resources. Also, a sample size of 200 was considered sufficient to
support planned analyses. Subjects for each AFS were selected to be representative of the base

populations in terms of three factors:

e Job experience
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Table 5. Bases Visited in the Initial Study of the Productive Capacity Project

Air Force Base
Travis AFB, CA
Beale AFB, CA
George AFB, CA
Davis-Monthan AFB, AZ
Holloman AFB, NM
Langley AF3, VA
Shaw AFB, SC
Offutt AFB, NE
Eglin AFL, FL
Charleston AFB, SC

e Race

o Gender

Job experience was considered a very important factor because of its hypothesizéd statistical

relationship with PC. Because of the hypothesized relationship, an attempt was made to get subjects

‘actoss a range of experience. This would allow the hypothesis to be appropriately tested.

Experience was expressed in terms of skill level. Skill level is a variable usea by the Air
Force. - It ranges from 0 to 9, and it represents the amount of training, expertise, and experience
an airman has on a given job. Skill levels 3 and 5 were sought becaﬁse they indicate that an
airman is performing mostly hands-on production wotk, as opbosed to receiving technical training
or performing supervisory duties. Race and gender féctors were considered important to éllow for

future investigation of differential eflects of the PC measure actoss race and gender groups.

The researchgrs reviewed distributions of personnel at the parf,ic_ipating bases and developed
target numbers of subjects. The actual individual test subjects were selected by the participating
bases, using guidance from the researchers. The bases had to select the subjects because they had
the most current information-on manning requirements, deployments, and personnel status. One
problem with having the bases select the subjects, was that no consideration could be given to

subject aptitude level. This is because ASVAB scores were not available in base-level personnel
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Table 6. Sample Sizes for the Initial Study of the Productive Capacity Project

Specialty Code | Number of Subjects
122X0 159
454X1 204
455X2 155
732X0 193

records. Like experience, aptitude is expected to be related to PC and it would have been desirable

to sample subjects from a range of aptitude levels. The final sample sizes are listed in Table 6.

The primary focus of Leighton and others’ research was to collect appropriate data to allow

them to assess how well supervisors can estimate the task completion times of their subordinates.

This means that the primary measurement instrument of the study was the time estimation
forms and accompanying booklets used by the supervisors to estimate how long it would take their
subordinates to complete the tasks being studied (24). The rating forms and booklets provided
the supervisors with detailed task descriptions, and a time line showing the fast, normal, and slow

times for task completion.

It was on the estimation forms that the supervisors provided the task completion time es-
timates, as well as an indicatior. of how frequently they have seen the ratee complete the task
(Regularly, Often, Never). In making their time estimates, supervisors were told to “think about
how long it would take each airman to do the task if he or she were working as quickly as they

could, while maintaining satisfactory performance” (21:52).

In addition to using the forms to estimate task performance times, the supervisors used them
to provide an overall or global estimate of their suhordinates’ productive capacity. The supervisors
were asked to answer the following question: “In this specialty, consider the maximum amount of
acceptable work that can be done by a person in a typical day as 100 percent. What percent of the

maximum could the person you are currently rating do in a typical day?” (21:52) This measure was

44




of secondary interest, and was collected for use as an object of comparison for the time estimates.

Fisure 6 provides an example of the time estimation form for 454X1.

Besides the PC rating forms, many other instruments were used during the study. These
instruments are to be used to validate the PC estimation methodology, and to investigate for
relationships between scores from these instruments and PC. Other data forms were used to collect

background information on the experimental subjects and their rating supervisors.

The main instrument for validating the PC estimation methodology is a hands-on test similar
to the hands-on portion of the WTPT developed under the Air Force’s JPMS Project. For the
test, a relatively small subset of tasks was chosen from each job (betweep 8and 11). A suBsample
of the experimental subjects were then chosen to actually perform the tasks (60 airmen from each
AFS). As the subjects performed the tasks, thé researchers used a stopwatch to determine their
performance times. This was determined to be the best possible way to validate the supervisor
estimates. Also,. JKTs were-administered to subjects in three of the four jobs studied (none was
available for 455X2). JKTs are written tasked-based, multiple-choice tests designed to measure
how well an airman knows the procedures required to petform job tasks (3). The JKTs are to
serve as a basis of comparison in which to évaluate the PC measure. In previous studies, corrected
correlations between the hands-on portion of the WTPT and JKTs were found to be between .50
to .80 indicating a moderate to high level of linear relationship (19:11), Since the estimated PC
measure in the current study and the JKT are both purported to measurL job performance, it was
expected that these measures would be correlated to some degree as wlll. High correlation was
not expected because the instruments likely measure different dimensions bf performance since the
JKT deals with how well an individual knows the job, and PC deals with how long it takes an

individual to do work on the job.

Other measures that were administered include a 160-item interest inventory, the VOcational

Interest For Career Enhancement (VOICE), which was administered to subjects to determine their




AFS 454X1

AEROSPACE GROUND EQUIPMENT (AGE) SPECIALIST

Name

Airman’s Name

R=Regularly
O«Occassionally
N=Never

How Often You
Observe Incumbent

Perform Task
(Check One Box)

o I
o IR

Consensus
Performance Time Scale

Aiman's SSN

Hr=Hours
Min~Minutes

Sec=Seconds

What is Incumbent's
Performance

Time?

= (Fill in Box Below)

- =

Fastest Normal Slowest
8 min 13 min 21 min
1l min 17 min 24 min

- Hed

In this specialty, consider the maximum amount of acceptable work that can be

done by a person in a typical day as 100 percent. What percent of maximum

could the person you are currently rating do in a typical day? Write your
estimate in the box below.

|

1%

1
100%

Percent of
Maximum

X

Figure 6. Example of the 454X1 Rating Form
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level of interest in their current job (9) (12). A 30-item motivation measure, the Generalized Moti-
vation Scale (GMS), was also administered to the subjects (32) (33). The GMS was administered

to allow for investigation of any relation between overall motivation and PC.

Numerous other data collection forms were used to gather background information on both
subjects and supervisors.

The project sponsor, AL/HRM, lLias assembled a rich data base made up of indi.vidual sub-
ject records cont‘aining the project measures described above. Adding to its value, data f;om other
important Air Force files have been added to ensure a complete background on the experimen-
tal subjects. Data added from the Uniform Airmen Record (UAR), a periodically-updated file
maintained by the Air Force Military Personnel Cenier (AFMPC), included education level, race,
ethnicity, and the date in which the squect began active ser\;ice. Data fron;. Military Entrance

Processing Station (MEPS) files included aptitude scores and other background information for

cross-checking purposes.

2.4 The Predictors of Job Performance.

In the previous section, significant discussion concerning the job performance model response,
job performance, was provided. Next, discussion focuses on the predictor variables. Recall that the

predictor variables to be used in this thesis are aptitude and experience.

Numerous factors are thought to influence the job performance of individuals. These include
personality traits, job satisfaction, job interest, aptitude, and experience, to name just a few.

Psychological research is filled with studies showing the effects of such factors on performance.

It is important to note that the job performance measute under study in this thesis is produc-
tive capacity, which is distinguished from productivity. Many individual attributes that influence
productivity like job interest, motivation, and other personality factors were not expected to influ-

ence productive capacity because PC is a measure of a person’s capecily to produce not their actual
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Table 7. ASVAB Subtests

Subtest Name No. of Items | Testing Time (Min.)
General Science (GS) 25 11
Arithmetic Reasoning (AR) 30 36
Word Knowledge (WK 35 11
Parag.aph Comprehension (PC) 15 13
Numerical Operations (NO) 50 3
Coding Speed (CS) 84 7
Auto-Shop Information (AS) 25 11
Mathematics Knowledge (MK) 25 24
Mechanical Comprehension (MC) 25 19
Electronics Information (EI) 20 9

production. PC is theoretically independent of how a person .views the work or feels abo‘ut the job.
PC however was not believed to be independent of such things as a person’s mental aptitude or
job experience since these likely influence a person’s capacity to produce. Because of the hypothe-
sized relationships between aptitude, experience and productive capacity, the Air Force’s emphasis
has been on aptitude and experience as predictors of PC (5) (13). This thesis continued with the

analysis of aptitude and experience as predictors.

In Air Force studies, aptitude is usually exprgssed in terms of scores on the ASVAB. As
previously mentioned, the ASVAB is a 10-subtest, paper-and-pencil test given to all armed service
and Coast Guard applicants (10). The test is designed to measure aptitude in various areas. The
applicants’ ASVAB scores determine whether or not they are selected for service, and if so, what

type of job they are classified into (10).

The Air Force uses five ASVAB composite scores to select and classify applicants and recruits.

Table 7 and Table 8 show the ASVAB subtests and composites, respectively, used by the Air Force.

The ASVAB is validated against a number of criteria by each of the services. The Air Force
typically uses the final grades Air Force recruits receive in technical training schools as validation
criteria. For instance, Ree and Earles (1992) accomplished an ASVAB validation study in which

they analyzed data from 88,724 Air Force recruits completing 150 training courses (31). For 22 johs




Table 8. ASVAB Composites Used by the Air Force

Composite Name Definition
Armed Forces Qualification Test (AFQT) 2VE+ AR+ MK
Verbal (VE) WK + PC
Mechanical (M) : MC +GS +2AS
Administrative (A) NO+ €S+ VE
General (G) ' ' VE + AR
Electronic (E) AR+ MK + EI+GS
MAGE M+A+G4+ E

The composites are computed using subtest standard scores.

which use the M composite for selection, t;he corrected-for-range-restriction correlation coefficients
between the ‘M composite and final school grades ranged between .63 and .78, Fo;‘ 11 jobs which
use the A composite, the correlation coefficients between A and final school grades ranged from .58
to .74. For 52 jobs using G, correlation coefficients r‘anged from .04 to .85. And for 44 jobs using E,
the correlation coefficients ranged from .56 to .90 (31:11-13). These moderate to high correlation

coefficients tend to indicate the ASVAB is valid, at least for predicting training school success.

This has long been the Air Force's method of choice for validating the ASVAB, but it is recog-
nized that validating the ASVAB against training érades does not necessarily equate to validating
the ASVAB against j- b performance. But, studies by Carpenter and others, Faneuff and others,
and AL/HRM indicate that ASVAB scoces can potentially be a significant predictor éf PC, a job

pérformance measure (5) (7) (13) (38).

Experience measures in Air Force job performance R&D are usually expressed in terms of
total months of active federal military service (TAFMS). This is generally used as a surrogate for

job experience because job experience indicators are not readily obtainable from existing computer

files. The reason job experience is considered important. as a predictor can be traceable to learning

curve theory. Learning curve theory basically states that the time it takes to complete a unit of
work will decrease as the operator becomes more experienced (41). This suggests that PC will
likewise be affected by job experience because PC is computed from performance time data. As a

result, experience is an important predictor in PC prediction models.
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2.5 The Relationship Between Job Performance, Apiitude, and Ezpertence.

The previous sections discussed the response, job performance, and the predictors, aptitude
and experience. This section discusses how job performance has been shown to relate to the

predictors in previous modeling efforts.

To analyze the effects of aptitude énd experience on job performance Schmidt, Hunter, and
Outerbridge (1986) performed a study based on a sample of 1,474 civilian and military personnel
(35). They used path analysis to analyze the impact of job experience and mental ability on
job performance. The measures of job performance used were written job knowledge tests, work
sample tests, and supervisory ratings of job performance. Their findings suggest that job experience
affects 5ob performance in two ways. First, greater job experience indirectly effects performance
because it leads to greatar acquisition of job knowledge. The greater job knowledge leads to greater
performance. Se.cond, job experience directly affects the ability of people to perform work-related
activities as indicated by work sample tests. Mental ability was found to have the same pattern

and magnitude of relationships on job‘ knowledge and work sample perfurmance as experience.

Schmidt, Hunter, Outerbridge and Goff (1988) conducted a study based on the same sample
as the previously cited study, to analyze the joint relation of experience and mental ability with job
performance (36). They tested three hypotheses. The first, the divergence hypothesis, “predicts
that as job experience increases, the performance difference between high- and low-ability employees
will increase.” (36:46) The second, the convergence hypothesis, “proposes that as employeeé gain
job experience, initial ability becomes less important as a determinant of job performarce.” (36:46)
Last. the noninteractive hypothesis states “experience increases job performance of high- and low-
ability employers at the same rate.” (36:47) In other words, the third hypothesis states .hat there is
no interaction between experience and ability. Their findings support the noninteractive hypothesis,

and that mental ability and experience are important determinants of job performance.
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In a similar study, Alley and Teachout (1990) used the WTPT data collected during the JPMS
Project (1). Like Schmidt, Hunter, Outerbridge and Goff, their findings support the noninteractive
hypothesis and the fact that mental ability and experience are important determinants of job

performance.

2.6 Air Force Job Performance' Modeling Research.

The preceding sections provided an overview of linear models and discussions of the response,
PC, and the predictors, aptitude and experience. The stage has thus been set for discussion of
specific Air Force studies in which the response variable was PC or raw performance times, and

the predictors were aptitude and experience.

To model PC, Carpenter and others used the logistic growth model in Equation 11 to model

PC (5:21).
PC = : 11
T 14 e-Bo=Briri~far2 te . (1)
where
PC = produclive capacity
o o= czperience (months in Air Force)
z2 = ASVAB aptitude score (Electronic Composile)
Bo,31,8: = parameters to be estimated
€ = the model error terms.

Note that the logistic model in its original form was not a linear mathematical model because
it was not linear with respect to the # parameters. However, the logistic model was linearized for

application of linear regression.

nl.




Carpenter and others linearized the logistic model by making the transformations indicated
in Equation 12 (5:21-23). Linearizing the model equation as such allowed for estimation of the

model parameters using least squares estimation.

PC
1-PC

In( )= Bo+ Prxy + Bexat e (12)

where

In(l—f-g—c) = the logit of productive capacaly

z = ezperience (months in AFS)

T2 - = ASVAB eptitude score (Electronic Composite)
Bo,B1,B82 = parameters to be estimated

€ = the model error terms.

Using Equatioln 12, Carpenter and others modeled PC at the task cluster level, and also at
the aggregate or overall level. The aggregate measure predicted was combuted from a weighted
average of task cluster performance times. They analyzed a total of 10 task clusters. Across the
10 task clusters, the estimated experience coefficient was significantly different from zero at the
a = .05 level in seven cases, and the estimated aptitude coefficient was significant in four cases

(5:22). Model R"s ranged, from .00 to .39 across the clusters. And. the models showed significant

\

1
I

regression relations in eight cases. For the aggregate model, both the estimated experience and
aptitude coefficients were significant at the a = .05 level. The aggregate model R? was .44 and the
model regression relation was significant at the o = .05. Overall, the results suggest the supervisor
estimate method for generating individual performance times has potential. But, as Carpenter and

others point out, further refihement is needed (5:51)

While Carpenter and others i1sed the logistic model for predicting PC. Faneuff and others

found that a linear model provided better model fit than did the logistic model (13:9). Faneuff and
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others estirnated PC at the overall or aggregate level using the model expressed in Equation 13

(13:9-10). Faneufl and others computed PC as WTPT score/mazimum observed WTPT score,

using data collected under the Air Force’s JPMS Project.

where

PC

Iy

T2

I3

Bo, b1, B2, B3

€

The model wé.s estimated for

PC =0+ Pizy + Paza+ fazs+ ¢ (13)

productive capacity

ASVAB uptitude score

ezperience (months in Air Force) |

a binary variable representing skill level
(codc.d 1 if skill is 5 or higher, 0 otherwise)
parameters {o l;e eslimated

the model error terms.

six of eight jobs studied under the JPMS Project. Oue job,

Aerospace Ground Equipment (the job studied in this thesis), was analyzed using two ASVAB

aptitude composites, Electronic and Mechanical, yielding a total of seven possible prediction mod-

els. The regression results showed a significant aptitude coefficient in four of seven total cases. a

significant experience coefficient in four cases, and a significant skill level coefficient in three cases

(all coeflicients were tested at the a = .05 level). Model R®s ranged from .10 to .23 (13:9~10).

AL/HRM modeled estimated performance time data (as opposed to PC data) at the task

level, using the learning curve model expressed in Equation 14 (7) {38). The data used was that

collected by Leighton and others for the Aerospace Ground Equipment specialty (the same data

used in this thesis) (21).
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In(t) = Bo + Biin(z1) + Boz2 + Bazy 22 + € (14)
where
t = eslimated task performance time
T = ecperience (monthsv on the job)
z2 = ASVAB aptitude score (Mechanical composite score)
Bo,51,082,0s = parameters Lo be estimaled
/
v € = the model error terms.

A general form of the learning curve is expressed in Equ‘ation 15 (2) (18). Like the logistic

model used by Carpenter and others, the learning curve model in its original form is not a linear

' model. But, like the logistic model, the learning curve model can be linearized so that its parameters
can be estimated via least squares. The linearized learning curve model is expressed in Equation 16.

Note that AL/HRM’s linearized model (Equation 14) is analogous to 'he general form of the

linearized learning curve model (Equation 16). A typical learning curve is plotied in Figure 7.

t= A% + ¢ (15)
where
t = task performance time
r = units of ezperience
A, &1 = paramcters lo be estimated
¢ = the model error terms.

Equation 15 can be written in lincar form as Equation 16.




Performance Time (t)

T T T —— - T T
» -
= .
) 1 1 1 ] | 1 1
Experience (x)
Figure 7. Plot of a Typical Learning Curve
In(t) = fo + Aiin(z) + ¢ _ (16)
where
t = lask performance time
z = units of experience
Bo = In(A), a parameler to be estimatcd
B1 = aparameler lo be estimated

¢ = the model error terms.

Using the linearized learning curve model expressed in Equation 14. AL/HRM found signifi-
cant coefficients for In(job erperience) for 26 of the 50 tasks, significant aptitude coefficients for 18

tasks, and significant eptitude x experience interaction coefficients for 14 tasks (all coefficients were

tested at the a = .05 level) (33). Model R”s ranged from .01 to .20. The models showed significant
g
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Experience (x)

Figure 8. Plot of Learnirnz Curves Broken Out by Aptitude

regression relations at the a = .05 level for 41 of the 50 tasks. The inclusion of the aptitude and
interaction terms in their model allowed AL/HRM to create learning curves broken out by aptitude

group. An example of learning curves broken out by aptitude groups can be found in Figure 8.

One significant problem with the learning curve model is that there is no apparent way to
model job performance at the overall job level. To model overall job performance <ing the learning
curve model would likely require aggregation of task-level performance times. Such an aggregated

measure would have a dubious interpretation.

2.7 Relatmg the Literature to the Research Objectives.

The previous sectiouns of this chaptes outlined modeling in general, and a great deal of lit-
erature on the Air Force’s job performance modeling R&D. This section serves to provide a brief

overview of the literature with specific reference to the research ohjectives outlined in Chapter 1.




£.7.1 Formulating a Productive Capacity Mcasure from Estimated Task Performance Times.

As previously mentioned in Chapter 1, an important research objective of this thesis was to
identify an appropriate Qay of f(ﬁrfn|11a1ting a PC mecasure from the estimated task petformance
times collected under the Productive Capacity Project (21). This PC formulation was to transform
the estimated performance times into a standardized measure that has meaning across tasks and
actoss jobs. Recall that such standardizatior. was also required for aggregating data across tasks.
There are probably numerous ways that the estimated task performance times can be transformed

into a meaningful PC measure. 1n the literature, three ways to formulate a PC measure were

proposed. These are described below.

2.7.1.1 The Formulation of Productive Capacily During the Initial Productive Capacity
Research. In one of the first PC research efforts, Carpenter and others did a stgdy of Avvionicsv
Communications Specialists and proposed the origiral PC formulation. They computed PC as t* /¢,
where * is the fastest possible time in which a given amount of work can be completed, and 1 is
the time that it takes the individual being assessed to complete the work (5:21). In this original

work, the * and t measures were applied to clusters of tasks.

This formulation has the desirable quality of ranging from zero to one, which rerults in an
intuitively appealing interpretation. The measure can be interpreted as an individual's output as
a proportion of maximum possible output.

Although the data collected under the Productive Capacity Project is collected at the task

level as opposed to the task cluster level, the measure could just as easily be formulated at the task

. level, as in the case of the current research.

Faneufl and othets used an adaption of the PC formulation of Carpenter and others in an
effort to extend Carpenter and others’ work 1o a greater number of jobs (13). The formmlation
used by Faneufl and others was in fact 1/t*, an apparent inversion of the 1*/t formulation. But,

the t and 1* did not tepresent performance times but WTPT scotes collected under the Air Foree's
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JPMS Project. The variable t was an individual's WTPT score while t* was the highest obtained
score for the sample. Since the t* and t values represented scores in which higher is better {the
opposite of performance time), Faneuff and others’ formulation is essentially equivalent in terms of

interpretation, as the Carpenter and others t* /t formulation.

2.7.1.2  The Formulation of Productive Capacity Under the Productive Capacily Project.

AL/HRM proposed the PC formulation ¢/t* (7). This is a simple inversion of the ratio proposed by
Carpenter and others. This reformulation was made because of AL/HRM’s concern that the origi-
nal formulation of Carpenter and others does not result in a linear transformation of the estimated
petformance time data. This was perceived as a nuisance factor for the type of analyses AL/HRM
was considering. A nonlinear transformation has the ability to adversely influence measures of

linear relationship between two variables, such as the Pearson correlation coefficient.

The AL/HRM formulation does not have the desirable property of ranging from zero to one.

" Although PC scores under this formulation can range from one to co, the scores still maintain

a degree of interpretability. A PC score of one means an individual is theoretically operating at
maxinmum possible PC. Scores above one represent inultiples of the fastest possible performance
times. For instance, a PC score of two would imply that it takes the individual receiving this score

takes twice as long as the fastest possible performance time, to complete the work.

2.7.1.3 The Formulatron of Productive Capacily i Tuone Studies. Although
time studies were not previously reviewed during the discussion of Air Fore~ i.% perforinance
measurement efforts, their methodology provides a possible PC formulation so they must now
be reviewed. A time study is generally an Industrial Engincering technique used to derive time

standards for completing certain job tasks and production-type jobs,

A first step in a time study is to cleatly specify the operation to be studied. After the

operation is clearly specified, a generally average worker. or operator, is selected to serve as the




subject of the study. The operator‘is then timed with a stopwatch by a qualified observer, for a

specified number of cycles of the work. ‘After the performance times are collected, the observer

then assigns a performance rating reflective of the production rate of the operator.

The performance r‘éting is used in “equitably determining the time required to perform a

task by the normal operator after the observed values under study have been recorded” (29:325).
In other words, the performance rating is used to adjust the time of the actual operator so that
it reflects the time to be expected for a truly normal operator. If the selected operator worked
faster than normal, as perceived by the observer, the observed time would be adjusted downward

to reflect the normal time. Likewise, if the operator perforined slower than normal, the observed

time would be adjusted upward.

A commor method of performance rating assumes that the normal operator is associated with
arating of 100, and performance greater than normal is indicated by values directly proportional to
100 (29:345). Thus, a rating of 120 would indicate that the operator's performance is 20% greater

than normal, while a rating of 80 would indicate performance 20% below normal (29:345).

This time study performance rat.ihg can be interpreted as a PC measure for a given operator.
Th.e underlying formulation of the measure could be stated as (tnormai/t) X 100, where tpormat is
the time it would take a normal operator to do the task under étudy, and ¢ is the time it takes the
actual operator to complete the task.

This PC formulation offered a third option for standardizing the estimated performance time
data collected under the Productive Capacity Project‘, provided the reasonable substitution of
tacg for tnormar is made. The quantity 1.4, the average time to complete the task, is virtually
synonymous with t,,,.n,ar and could be computed given the available Productive Capacity Project

data.

2.7.2 Seclecting a Task Werghting Scheme. Applying task weightings would give the

tasks different levels of influence on the computed overall PC measure. This weighting is essential
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if one is to allow more important tasks to have greater impact on overall PC. The question is which

tasks are more important?

Tasks are known to difler on many dimensions such as criticality, time to complete them,
learning difficulty, percent of the incumbents performing them, and percent of time incumbents
spend on the tasks {40). Any of such factors coLld serve as a weighting factor, depending on the

nature of the overall PC measure being computed.

In developing the WTPT, task clusters were weighted by the product of the mean recom-
mended training emphasis rating and the cumulative percent time spent performing tasks in a
cluster (23:6). The weights were used in determining how many tasks from each cluster to include
in the WTPT. This weighting factor assigned weights (importance) to tasks based on how impor-
tant the tasks were perceived in the training community and how much time airmen spend doing
them. This appeared to be a reasonable weighting factor for selecting tasks for the WTPT, but
ldid not appear so for computing overall PC measures. Since PC is a quantity-based measure of a
worker’s capacity to produce, it did not seem appropriate to let the training emphasis play a part
in the weighting scheme since this did not seem to be an influencing factor on how much an airman

can produce.

Carpenter and others, in the initial I“C research, used a weighting scheme to weight the
estimated performance times of individuil's on the 10 task clusters when computing overall PC

{5). But, it is not stated what the weighting scheme was.

2.7.8 Aggregating the Task-Level Data tmto an Overall Productive Capacily Measure.
As just mentioned, in the initial PC research, Carpenter and others used a weighted average of
the estimated performance times for the task clusters to compute an overall observed PC measure
{5:23). But there was no mention of what the weighting scheme was. Unfortunately, this was the
only research documented by the Air Force where job performance data were collected at the task

or task cluster level and so required aggregation. The literature thus indicates that the only way
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task-level data has been aggregated into overall PC measures was through weighted averaging of

the task-level data.

2.7.4 Developing Prediction. Models. There were three primary studies which involved
the modeling of PC or performance time as tl.le'response, and the use of aptitude and experience
as predictors. These were the studies by Carpeﬁter and others, Faneuff and others and AL/HRM
(5) (13) (38). The results of the ’studies were varied. Carpenter and others reportedithe higlies£
R3?s of any of the studies using a two-predictor, first-order logistic model (5). Faneuff and others
found that a first-order linear model fit their PC data better than a logistic model (13). Finally,

AL/HRM found relatively good fit to untransformed time data using learning curve models (38).

2.8 Research Direction.

‘The reviewed literature provided some definite direction for the current research. First, The
literature suggested four possibilities for meeting the first research objective, formulating a PC

measure from task-level time data:

1Lt /t
2. /t*

3. (=) x 100 e

Previous research offered only limited insight into how to meet the second research objective,
selecting a task weighting scheme. In developing the WTP'T, tasks were weighted by the mean
recommended training emphasis rating and the cumulative percent time spent performing tasks
in a cluster-(23:6). However, such a weighting scheme did not appear appropriate for the current
research because of the nature of the PC measure. (PC is a quantity-based measure of a worker's v

capacity to produce, and to weight it by mean recommended training emphasis rating and the
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- cumulative percent time spent did not appear to make sense.) This was the only weighting scheme
discussed in ihe literature. Since it did not seem appropriate for the current research, the literature

thus provided no particular direction for the second research objective.

The literature likewise offered only limited direction for the third objective, aggregating the
task-level PC data. The only aggregation method discussed in the literature was weighted averaging
of the task cluster-level data (5:6). However, this seemed to be a reasonable aggregation method

and was chosen as the method of aggregation for this thesis.

The literature did provide significant guidance for the last and most important objective,
developing prediction models. Three models having relevance to the current research (response of
i
PC or performance time) were discussed in the literature. These models weré:
|

1. Logistic model for predicting PC
2. Linear model for predicting PC

3. Learning curve model for predicting performance time

|
|

Since there was little or no guidance provided for the second ?nd third research objectives,
the research direction suggestéd by the literature can best be summaj;rized in Figure 9. In Figure 9,
the individual boxes indicate the resp 1<e formulation and model t.ypfe combinations which existed,
given previous studies. The darkened buies indicate which combinétions were inappropriate due
to response formulation and model type incompatibility. Written in the appropriate boxes are the

studies that were done for a given response formulation and model type combination. An empty

box indicates no studies have been done for a particular combination.

It was decided that this thesis would incorporate one of the PC formulation and model
type combinations for which a previous study had been done. This was to take advantage of the

information available as a result of the previous study. This left three choices:

1. Logistic Model with the t*/t formulation
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MODEL TYPE
Logistic Linear Leaming Curve
._l: Carpenter and Faneuff and
t Others Others
RESPONSE
FORMULATION

Figure 9. Graphical Representation of the Research Direction Suggested by the Literature

2. Linear Model with the ¢*/t formulation
3. Learning curve model with ¢t formulation

Because Carpeﬁter and others, using the logistic rﬁodél with the ¢* /t formulation, obtained
higher R%s than Faneuff and others did with the linear model, the first combination above was
determined a better alternative than the second. And, because the learning curve rﬁodel seemed
inappropriate for modeling overall job performance, the first combinafion also appeared better than
the third. It was thus decided that given the estin;ated time data collected under the Productive
Capacity Project, the response, PC, would be formulated as t*/t, and the regression model for
predicting it would take the form of the logistic model. The remainder of this thesis documents

“the re'seh;ch performcd to develop the regression-based job performance model, using the PC for-

mulation t* /t and the logistic regression model.




I1l. Methodology

The last two chapters were designed to provide the reader with a substantial background on

modeling, and the Air Force’s job performance measurement R&D leading up to and ihcluding the
first research effort under the Productive Capacity Project (21). This chapter describes the steps
taken in developing the experiment 1 mathematical modelé for p;c\dicting the job performance of
Air Force Aerospace Ground Equipment (AGE) personnel given the estimated task performance
time, aptitude and eﬁperience data collected under the Productive Capacity Project. Development
of such descriptive models was of course the primary research objective of this thesis. This chapter
begins with a brief overview of the subjects and data used to meet the research objectives. Following
the overview of subjects and data, the specific steps taken to meet each research objective are

discussed.

3.1 Subjects.

The experimental subjects were 204 airmen and NCOs studied by Leighton and others under
the Air Force’s Productive Capacity Project (21). The subjects were assigned to Air Force speuialty
454X1, AGE. AGE personnel are the airmen responsible fot inspecting, maintaining and repairing
necessary ground equipment used to support atrcraft and Ground Launchea - ’ruise Missile (GLM)
systems (8). Such ground equipiment is called aerospace ground equipment and includes items such

as electrical generators, heaters, hydraulic bomiblifts, and air compressors.

The subjects were from the Air Force bases listed in Table 5. The procedures used to select
the experimental subjects are described briefly in section 2.3.2.5 and in depth in the technical
paper by Leighton and others (21). Figure 10 through Figure 13 describe some notable sample

characteristics.

As can be seen in Figure 10, the vast majority of the sample were E-3 (Senior Airmen) or

E-4s (Sergeants). Also, Figure 11 shows that most of the sample was from the 5 skill level, with
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Figure 10. Frequency Distribution and Pie Chart of Subject Grade
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Figure 11. Frcquengy Distribution and Pie Chart of Subject Skill Level
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Figure 12. Frequency Distribution and Pie Chart of Subject Job Experience
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Figure 13. Frequency Distribution and Pie Chart of Subject Aptitude
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much smaller numbers being from the 3 and 7 levels. In reference to the subjects’ job experience,
Figure 12 shows the majority of the sé.mple were likely first-term airmen (121 our of 204, or 59.31%)
as indicated by job experience between zero aﬁd 48 months (Some retrainees might also show a
Jjob experience less than or equal to 48 ﬁlonths but have significantly more Air Force experience.).
Note also that 88.73% of the sample had eight years or less experience, and only about 2.45% had
more than eight years exlperienée. Also, observe that the 'expeﬁence data appear p(;sitively skewed,
meaning the preponderance of subjects were associated with job experiencé measures near the low

end of the experience range.

The aptimde di‘stri:bution in Figure 13 indicates that the sample Mechanical aptitude per-
centile scores were distri{Luted between 46 and 99. The ASVAB Mechanical score (M) distribution
was considered importanjt because the M score was used as the aptitude predictor in the regression
modeling. The M scorej’was selected as the aptitude predictor because there was a minimum M
score requirement for entering ‘t.he AGE specialty. This indicated thz;.t mechanical aptitude had
been pteviously identiﬁe:’;d by the Air Force as being somehow related to performance in the AGE

j
specialty, thus M seemegi appropriate as an aptitude predictor variable for the current study. The
| .
Mechanical aptitude sco:re distribution was restricted to values generally greater than 51 because
this is the current minir%mm Mechanical aptitude score requirement for entering the job. (An ad-
ditional requirement of tfm Electronic percentile score (E) of at least 33 also exists for entering the
job (8).)

Table 9 provides a two-freauency distribution of subject aptitude by job experience. Recall
that aptitude and experience are the predictor variables. The two-way frequency distribution was
provided to offer insight as to what the true eflective range of the estimated regression model is.
In other words, sparse or null cells in regions of Table 9 indicate that the regression model should
be interpreted cautiously in such regions. This is because the shape of the estimated response

surface in such areas was d- termined by relatively few lata points. Note that ihe matrix depicted




Table 9. Two-Way Frequency Distribution of Sample Aptitude by Job Experience

Months of Job ASVAB Mechanical Percentile Score
Experience 46-55 | 56-65 | 66-75 | 76-85 | 86-95 [ 96-99 [[ Unknown ||| Total
0-12 0 5 1 4 3 0 0 13
13-24 4 5 12. 5 2 2 1 31
25-36 1 10 12 9 8 4 0 44
37-48 2 8 10 6 5 1 1 33
49-60 1 6 8 7 3 2 3 30
61-72 0 0 3 1 2 1 5 12
73-84 2 2 0 1 5 0 3 13
85-96 0 1 2 1 0 0 1 5
97-108 1 0 0 0 0 0 0 1
109-120 0 0 0 0 1 0 4 S
121-132 0 0 1 0 0 0 1 2
133-144 0 0 C 0 0 0 0 0
145-158 0 0 0 0 0 0 0 0
157-168 0 0 0 0 1 0 2 3
169-180 0 0 0 0 0 0 1 1
> 180 0 1 0 0 0 0 0 1
[ Unknown [[ 1 | 2 7 5 ] o0 1 T o T v I 10 |

-

w
—
—

L Total i

[
[ V]
[
o

| 490 ] 54 T

10 ] 23 ] 204 )

in Table 9 is very sparse beyond 96 months of job experience. The estimated models may thus be

tenuous in that region.

In summary, the sample tended to be E-3s and E-4s, with skill levels around 5. Further, the
airmen tended to have less than eight years of job experience, and aptitude covering the somewhat

restricted range of 46 to 99.

8.2 Data.

As previously mentioned, the data used in this thesis were collected under the Air Force's
Productive Capacity Project, by Leighton and others, between March and September 1990 (21).
A brief overview of the Leighton and others’ rescarch, to include data coliection, was included in

Section 2.3.2.5. Again. the reader is referred to (21) for a complete description of that research.
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The primary data used were the estimated task performance times provided by each subject’s
supervisor. Associated with each subject was his or her supervisor’s estimates of how fast he or
she could complete each of 50 job tasks while simultaneously working as quickly as possible and
maintaining an acceptable level of task quality. Complete tasii descriptions are included in Table 22

at Appendix A.

The tasks seleéted for analysis were those that tend to be ﬁerformed by fairly junior and
intermediate personnel. The tasks included mostly hands-on production-type tasks as opposed to
the supel"visory or management tasks that more senior personnel perform. With this in mind, the
sample described in the previous section appeared to be a fairly reasonable sample as indicated by

the grade, skill level and experience characteristics provided.

Not all subjects had a complete set of 50 task ratings. Some supervisors did not provide all

ratings for all subjects. As a resuit, a relatively small number of missing values existed.

As previously indicated, other primary data used for the analyses included the subjects’ self-
reported level of job experier;cé, and the subjects’ Mechanical ‘omposite score from the ASVAB
obtained when applying for enlistment. These data were used as predictors in the mathematical
prediction of the subjects’ productive capacity. As previously mentionec tk> 4 aptitude score
was chosen as the aptitude predictor because scores on this composite help determine a recruit’s

eligibility for entering the AGE specialty.

Secondary data of interest were the subjects’ Job Knowledge Test percent correct scores

(JKT), the supervisors’ global or overall estimates of the subjects’ PC (GPC), and a PC measure
derived from actual stopwatch times of a limited subsample of the subjects (MTPC). These mea-
sures were used as a basis for comparison for the regression model results derived in this thesis.

Figure 14 provides ¢ graphical representation of the data used in the analyses.
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Figure 14. Graphical Representation of the Data Used in the Analyses

8.3 Procedure.

The preceding sections provided a brief overview of the experimental subject sample and the
relevant data collected. Discussion may now proceed to the actual steps taken to meet the research
objectives. The reader may wish to keep in mind that although the primary research objective
was to develop regression-based job performance models, the first three research objectives (see
Section 1.3) were concerned only with the response information, the estimated tésk performance

times.

3.3.1 Formulating a Productive Capacity Measure fro- 1< .. ited Task Performance Times.
As mentioned in Chapter 1, it was necessary to transform the estimated task performance times

to give then interpretability and to allow them to be aggregated across tasks.

In reference to Figure 4, the formulation of a PC measure from the raw time data is associated
with first phase of the model building process, data collection and preparation. Of course, the PC
formulation was only concerned with the preparation part because the data had already been
collected. In reference to Figure 14, the PC formulation involved editing and transforming the data

under the Est. Time on Task i columns.




3.3.1.1 Defining Task-Level Productive Capacity. Task-level PC was defined ac-

cording to the Carpenter and others formulation t*/t (5:21). Recall that t* is the fastest possible
completion time for a given task, and t is a subject’s completion time. In reference to Figure 14,
the ts are the entries under the Est. Time on Task i columns. The t*s were derived from the

minimum observed time in each such column.

As explained at the end of the previous chapter, the t*/t formulation was selected over the
other possible formulations. The t* /¢ formulation has some desirable characteristics which made
it a reasonable choice. First, unlike the other formmlations, that of Carpenter and others yields
values that range between zero and one, thus lending thcmso_lves to logistic rc;gression models.
Recall that it was the logistic regression models of Carpenter and others that yielded the highest
reported model R%s for any of the PC studies (3) (13) (38). Second, the Carpenter and others
formulation maintains the desirable property of being nicely interpretable. It can be interpreted as

an individuals work capacity as a proportion of maximum possible capacity.

3.3.1.2 Editing the Raw Estimaled Time Data. - Beforé the PC measures were
computed from the estimated task performance times, the estimated times were edited to control
for serious outliers. As Neter, Wasserinan and Kutner (1990) point out, “Outliers can cause great
difficulty.” (27:121) They describe how when least-squares estimation is used in trying to predict a
response, a fitted surface can be pulled (iispropo*ti()llatcly towaré an outlier. They suggest discard-
ing an outlier “if there is direct evidence that it represents an ertor in recording, a miscalculation,
a malfunctioning of equipment, or a similar type circumstance.” (27:122) The reason that editing
wes justified with the raw estimated time data is because the format in which the time estimates
were collected was a type of free-response format. This means that there was no limitation on the
answers that could be given. Recall that when the supervisors provided their time estimates, they
were provided with previonisl_v created beuchimark scales showing SMEs’ opinions as to what the

fastest, normal and slowest completion times were. However, these were to be used as take-tl-o1-
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Figure 15. Histograms of the Raw and Edited Estimated Times for Task G179

leave-it guidance for the supervisors in making their estimates. The supervisors were not required to
keep their estimates between the fast and slow time benchmark times if they did not want to. This
resulted in a free-response format. One problem with the free response format is that responses

have a tendency to widrly vary, even to extremes. This necessitated the need for data editing.

To control for pct: atial outliers, the raw time estimates for a given task were edited by pulling
in all values that were L2zyond .\ three standard de;'ia'ions from mean. In other words. all valnes
beyond three standard deviations were recoded to a value of the mean & three standard derviations.
This was done because for a distribution of measurements that is approximately bell-shaped, the
interval between + three standard deviations will contain almost all the measurements (25:9).
Thus, anything beyond these limits was considered an outlier, and recoded. Values beyond three
standard deviatior s from the mean were recoded and not discarded because these outlying data
were not considered Lo be transcription errors or results of some other error, but an estimate from
a supervisor who did not happen to agree with the range of times provided. The recoding was thus
done to retain the information contained in the outlying points while keeping some consistency in
the ratings and keeping the vaniance at a reasonable level. Figure 15 provides an example of the

effects of the editing on the raw data for one task, G179.




3.9.1. Computing the Productive Capacity Measure af the Task Level. As previ-

ously mentioﬁed, task-level PC was defined as ¢*/t. In the actual computation, ¢* for a task was
computed as .99x (minimum estimated time for the task (after editing)). Again, in Figure 14, the
ts are the entries under the Est. Time on Task i columns and t*s are derived from the minimum
estimated time in each such column. This computation of t* accounted for the fact that true
Jastest possible time was probably not recorded for this sample, but is likély somewhat less than

the sample minimum. After computing t* in this fashion, the PC measure t*/t was computed for

each individual for each task.

3.8.1.4 Editing the Productive Capacity Measure al the Task Level. After comput-
ing the task-level PCs, a review of their histograms indicated that the editing of the raw estimated -
times was not enough to control for serious outliers. Several of the task PC distributions still

indicated additional obvious outliers. This indicated the need for further editing.

The task-level PCs wére edited much the same as the raw est.imafed times. For each task,
PC measures beyond + three standard deviations from the mean were pulled in to values of the
mean * three standard dewiations. Unlike the diting of the raw estimated tiimes, this editing
influenced the intgrpretability of the PC measure. . -call that PC is intetpreted as an individual’s
output as a proportion of maximum possible output. As an example of how the interpretability
was influenced, consider an exafnple where the mean % three sfandﬁrd deviations defines the range
of .2-.8. Assume that all values outside of this range are considered extreme outliers and recoded
as .2 or .8, depending on which side of the interval they fall. The ret;.oding is done because values
outside of the range mean % three standard deviations are considered impossible. After recoding,.
the range of PC values is not zeto to one but .2 to .8. Since .2 :apresents the new lowest possible
output level, it must correspond to a PC of zero. Likewise, sin ¢ .8 represents the new highest
possible output level, it must correspond to a PC of one. To make .2 and .8 correspond to zero and

one respectively, the rescaling transformation in Equation 17 was made on the edited PC values for




the task. The rescaling ensured the interpretability of the PC measure as an individual’s output

as a proportion of maximum possible output.

The rescaling transformation function in Equation 17 is a linear function of the original PC
data. This means that the transformed data wili exhibit exactly the same linear associations (same
correlation coefficient, same Iineér regression results, etc.) with other variébles as the untransformed
data. The rescaling may, hoyu'ever, influence logistic regression results because the logistic model is
not a linear model in its original form.

A small adjustment made to the rescaled values was to recode the rescaled value of zero to

.01, and rescaled value of one to .99. This was to ensure that the logistic model would be defined

for all computed rescaled values. {The range of the logistic function does not include zero or one.)

_ Pcoh - Pcmx‘n ~
PCrescated = PCoav — PConin ) (17)

where

PChrescated = PC rescaled to 0-1 space

Pcobﬁ

]

Observed value of PC
PCrnin =  Minimuwm observed value of PC

PCoyar Mazimum observed value of PC.

it

After reviewing the histograms of the edited, rescaled PC values, 17 tasks still showed serious
outliers. These were G171, G179, G181, H238, 1251, 1255, 1264, 1265, 1283, 1254, 1299, 1332, 1347,
L406, M444, N48u, P549. One final editing and rescaling was applied. This time, outliers from
the 17 tasks were identified through subjective judgement by the author. The outlicrs were then
pulled in to the closest reasonable ohserved value. The reedited PCs were then rescaled according

to Equation 17, and the adjustments to the zero and one values were made. This completed the
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Figure 16. Histograms of the Productive Capacity Values in the Editing Process for Task G179

data editing for the PC task variables. Figure 16 provides an example to show the effects of the

PC editing aud rescaling for task G179.

After the final editing, summary statistics were computed for the task-level PCs for compar-

ison to the summary statistics for the associated raw estimated times. This comparison was made

primarily to determine if the editing had the desired effects of outlier ..nd variance control. Of

primary interest was the coefficient of variation. The coefficient of variation, C'V, is a measure of
the dispersion of the distribution of a variable. The computational formula for CV is shown in

Equation 18 (26:383).
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where

CV = coefficient of varalion
s = standard devialion

X = arithmelic mean.

CV expresses a distribution’s dispersion relative to the distribution mean, thus making the
measure comparable across variables with different distributions. A CV of less than one is generally
indicative that a distribution is not highly variable, thus partially indicating that the distribution

is not subject to severe outliers.

Having computed CV for both the raw estimated times and final PC measures for each task,
it was possible to assess the effects of the t*/t transformation, the editing of the raw times, and

the editing of the PCs on the response data.

8.92 Selecting a Task Weiyhfing Scheme. The selection and gpplication of a task
weighting scheme still involved the data preparation phase of the regression model building process
depicted in Figure 4. In reference to Figure 14, the selection of a weighting scheme involved the
identification of appropriate weights for each Est. Tinie o?n Task 1 column to give the data derived
from each column an assigned level of importance. This was to give the task-level data varying

levels of influrnce when computing an overall measure.

Because the PO measure is time-based and reflective of overall worker output, it sertied most
appropriate to wright ‘he tasks by the average amount of time individuals spend doing each task.
If the individual unde: study is siow on some tasks and fast on others, it is necessary to consider

the relative amount o time spent on each task to accurately assess overall capacity. To illustrate,




consider the extreme situation in which a worker is exceptionally fast on all but one job task.
And, say the yorker is exceptionally slow on that one outstanding task. If tﬁe job requires the
individual to perform the outstanding task 99% of the time, his or her productive capacity should
be compar.;itively low. This is despite the fact that his or her performance is exceptionally good on

the other numerous tasks that are infrequently performed.

The Occupational Measurement Squadron collects relative performance time data as part of
their periodic surveys of the AFSs (40). One such measure outlined in the Occupational Survey
Report is Average Percent Time Spent Performing Duties (40:23). In the report, the data is broken
out by skill level. The task weightings used in this thesis were computed as an average 6f the
averege percent lime spent for the skill levels that would generally be expected to do the types of
hands-on tasks under study (skill levels 3, 5 and 7). Because of the nature of the available avfrage
percent time spent data, weights had to be derived for each duty area, and the duty area weight

was appiied to each task from that duty area.

Overall, the selected weighting scheme was designed to give greatest importance to tasks from

the duty areas that are performed most often by 3, 5 and 7 skill level airmen.

3.3.8 Aggregating the Task-Level Data into an Overall Productive Capacity Measure. As

_with the first two research objectives, this one dealt with the data preparation phase of the model
building procéss depicted in Figure 4. -
-Having computed the task weights, it was possible to define and compute aggregate or overall

PC per individual. The following discussion describes how this was done.

3.3.3.1 Defining and Computing Qverall Productive Capacity. To derive a single
PC measure for an individual from his or her task-level data, it was necessary to somehow collapse
task-level ratings into a single overall measure. Figure 17 presents a graphical illustration of the

task-level data aggregation.
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Figure 17. Graphical Representation of the Task-Level Data Aggregation

This aggregation of the data was accomplished through weighted averaging. Aggregate or
overall PC, then, was defined as a weighted average of the subjects’ final edited and rescaled task-
level PCs. Weighted averaging was used because previous studies had successfully used weighted
averaging as an aggregation method (5). Also, weighted averaging is a commonly accepted and
frequently applied statistical technique used to aggregate data (of the same units) that difler on
known dirl:lensions. Equation 19 shows a mathematical representation of how the aggregate PC

i

measures vlrere defined (21).

i
|

: T wi PG
\ PCravg = L:_L"__.'_ (19)

z:;x w;

where
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‘a weightcd average of task-level PCs

PCuavg
PC; = the individual’s PC on task i
w; = the weight for task i

n = tie number of task measurements for the individual.

A simple, or unweighted, average was also computed for strictly comparative purposes. The
unweighted and weighted average PC values were compared through summary statistics and cor-
relational analyses. The correlation statistic used was the Pearson product-moment correlation

coefficient, r (26:429). The computation for r is shown in Equation 20.

r= n Z:lzl U'}" - (E?:l Ui )(2?:1 V‘) (20)
Vin T, U = (D0, Ul ln i, Va2 = (S0, Vi)?)

where

r = Pearson product-moment correlation cocfficieni
i = observation number

n = number of observations of U and V

Ui = cbservation t of a variable U

Vi = observation i of a variable V.

The Pearson correlation coefficient is a measure of linear association between two variables.

The coefficient ranges between -1.0 and 1.0. Measures near -1.0 and 1.0 indicate a high degree of

linear relationship. A negativ. -oefficient means the measures are inversely related, or one measure
tends to be high when the other is low.

The unweighted and weighted average PCs were compared via summary statistics and r to
determine if the measures were unique. The idea was that if the weighted and unweighted measures

were statistically similar and highly positively correlated. then the weighting added no uniqueness

9
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Figure 18. Graphical Representation of the Regression Models Developed

to the overall measure. Similar summary statistics and high correlation would thus indicate that
the weighting scheme added nothing to the computation of overall PC beyond what could be gained

by simple averaging.

3.3.4 Developing Prediction Models. After computing the a;ggregate PC variables, it was
possible to begin the modeling phase. The following sections describe the steps taken to complete
the regression modeling at the aggregate level and also at the task-level. Figure 18 provides a
graphical representation of the regression models to be developed. The goal of the regression
analysis was to determine the § parameter estimates that would define the mathematical function

of the predictors depicted in the model box.

3.3.4.1 FEditing the Predictor Variables. The previously discussed research objec-
tives each dealt with preparation of the response data for the regression modeling of job perfor-
mance. Like the response data, the predictor data had to be prepared in accordance with the first
phase of the model building process depicted in Figure 4. 1n reference to Figure 14, the graphical
data file depiction. the following editing procedures were applied to the columns under the heading

Predictor Variables.

As with outlying response valu-s, outlying predictor values can be problcinatic. “Outlying

cases may involve large residuals and often have dramatic effects on the fitted least-squares re-
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gression function.” (27:392) Recall that the predictor variables are aptitude (ASVAB Mechanical
percentile scores) and experience (months of job experience). Frequency distributions and pie charts

for these variables were provided in Table 9, Figure 12 and Figuré 13.

The frequency distribution of aptitude scores iﬁdicated tha, there were no obviou's outliers or
other apparent problems with the aptitude data. The scores appeared near normally distributed
between 46 and 99. The experience variable’s distribution appeared positively skewed with the
vast majority of the observations (88.73%) having 96 or'less months of job experience. Note that
‘the frequency distribution shows';)ne potential outlier with a value greater than 180 months. The’
actual value recorded for this observation was 283 months, well beyond the next highest value of

" 169. A review of the data file showed that no subject had more than 195 months of total Air Force

experience. It is of course impossible to have more Air Force job experience than overall Air Force -

experience thus the value of 283 was identified as a miscoding. The case was dropped from further

analyses.

3.8.4.2 Fitting the Regression Models. The editing of the predictor variables
concluded the data preparatior. phase of the model building process. The next phases, according to
Figure 4, were reduction of the number of predictor variables and mode! refinement and selection.

The following discussion describes these phases applied to the current research.

Recall from the literature =zview that the model which vielded the highest R%s among the
Air Force's PC studies was the logistic moda!] used by Carpenter and others (5:21) (13) (38). With
this result in mind, a logisti; model was fit to the PC data. for each of the 50 tasks, and also to the
weighted and unweighted average PCs. The logistic model and logistic regression were discussed

only briefly in the previous chapter. Following is a more in-depth discussion.

The logistic regression model is & model that is frequently applied in situations where the
response v-riable is binary, zero or one. 1n such situations, the observations are often classified into

groups based on values of one or more predictor variables. Thus, grouping of ohservations allows
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the individual zerofone response observations to be collapsed into a proportion for the group. The
zerofone response often indicates an observation’s possession (one) or lack (zero) of some trait
of interest. Grouping observations collapses the responses into a single measure representing the
proportion of observations possessing the trait. The logistic function, being restricted to the range
between zero and one, is ideally suited for modeling such proportions given known levels of the
predictors. Logistic regression is thus frequently used to predict the proportion of individuals in a

given group which possess the trait of interest.

A general form of the logistic model is expressed in Equation 21 (17:25-26).

e9(2) 91
"a)= o e (21)
where
m(z) = a response variable (ranging from 0 to 1)
g(z) = some function of the predictor variables (linear in the B parameters)

€ = the model error terms.

Note that the logistic model is not a linear model because it is not linear in the 3 parameters
which would be contained in the function g(z) (The function g(z) is linear however. This fact will

be used later.)

The logistic function is generally S-shaped as depicted in Figure 19 and Figure 20. These
represent exainple plots of logistic functions with one and two predictors, respectively. The addition
of higher-order and interaction terms and the nature of the relationship between the variables can
cause the logistic function to take on shapes other than the standard S-shape. This will be shown

in Chapter 4.
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As mentioned, the logistic model is not linear in its original form. But, it can be linearized

using the logit transformation. The logit transformation is shown in Equation 22.

Logit of n{z) = I"(T{L:%;;) (22)

Transforming the response (a proportion) through the logit transformation allows the logistic
function to be written in linear form as in Equation 23. The linearized logistic function is called

the logit response function (28:583).

7(z)
In{—————) = ¢( 23
M) = 92 +¢ (23)
where
7(z) = a response variable (ranging from 0 to 1)
‘"(1—15%) = the logit of the response, w(z)
g(z) = some funclion of the predictor variables (linear in the coefficients)
€ = the model error terms.

Although the logistic model can be expressed as a linear mbdel, standard linear regression
cannot be applied if the response data ~re originelly binary and the analyst wishes to apply standard
linear regression inferential statistics. Recall from the linear regression discussion in Section 2.1.1
that application of the linear regression inferential statistics requires the model assumption that
the error terms, ¢, are distributed N(0.¢7). It so happens when the response data are origiaally
binary. the error terms are not normally distributed. but binomially distributed (17:7) Also. there

is nonconstant error variance (heferoscedasticily) across varying levels of the predictors (28:581).

“These facts indicate that ordinary least squares estimation of the model parameters is inappropriate.

When there are a sufficient nuinber of repeat observations at each level of the predictors. the




parameter estimates can be obtained via weighted least squares (28:584-589). Otherwise, the
parameters may be estimated using maximum likelihood estimation (28:589-595).
As a review, logistic regression is often applied when the response data are binary. And, the

logistic regression model is characterized by three properties:

1. Nonnormal error terms
2. Nonconstant error vari‘ance
3. A constrained response function (between zero and cne) (28:5804581)
These properties make the u;se of ordinary least squares estimation of the parameters inappropriate.

The above discussion of logistic régression assumes that the response data are originally bi-
nary, zero or one, data. If the response data are proportions, but not derived from binary data,
an adaption of logistic regression is possible (see Referenée (5)). Productive capacity, formulated
as t™/t, is one such proportion which may be modeled with the adaption of the logistic regression
model. When the proportional response data are not derived from bi‘na‘ry data. the logistic re-
gression model is not necessarily characterized by nonnormal error terms and nonconstant error
variance. This means that estimation of model parameters through 6rdina;y least squares esti-
mation may be possible. There is of course tvh'e requirement to check the linear regression model

assumptions. Thus, the adaption of the logistic regression model to the nonbinary response case

involves:

1. Use of the logistic function

2. Linearization of the logistic function through creation of the logit response function
3. Estimation of the model parameters using ordinary least squares

4. Aptness anaiysis to check normality of error terms

This adapted logistic regression model was used to model PC in this thesis.




Although primary interest was in predicting the aggregaté ot overall PC measures, the task-
level regressions were run as a screening exercise to identify any trends in the relationships between
the predicters and PC across tasks. This was to provide insight as to whether the number of
predictor terms might be reduced (the second phase of the model building process). The adapted
logistic model that was fit was a full second-order model to include aptitude/experience interaction
terms. A full second-order model was selected to account for any curvature or interaction effects

that may not have been accounted for with a first-order model. The model that was fit at the task

and aggregate level can be found in Equation 24.

eBo-H’lff+ﬁyrg+ﬁafll:+potl+ﬂah

pC = 14 er'30+ﬁlTf+ﬂar§+ﬂ:tlf7+ﬁcll+ﬂsrz +e (24)
where
PC = productive capacily
) = ASVAB Mechanical percentile score
z3 = months of job ezperience
Bo.B1,02.83, 84,85 = parameters to be estimated
€ . = model error terms.

The logistic model in Equation 24 was written as the linear model in Equation 25. Writing the
equation in this fashion (linear in the parameters) allowed the model parameters to be estimated

using least-squares regression.

PC ”
In{ l—_'?z) =3 + hri+ fazh + Bazrza + Bary + Bszu + ¢ (25)

where
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-ln(-l—_’;,(—:z:) = the logit of productire capacily
Iy = ASVAB Mecchanical percentile score
E 2 = months of job czperience

80,081,082, 83,84, 85 = parameters {o be estimated

€ = the model error terms.

After the logistic models were fit to the 50 tasks and the aggregate measures, a forward
stepwise regression was run for the aggregate case (weighted average PC). This was in accordance

with the second phase of the model building process, reducing the number of predictor variables.

After performing the stepwise regression, the resulting aggregate model was subjected to an
aptness analysis to include a plot of residuals vs. predicted values and a normal probability plot. In
teference to Figure 4, the aptness analysis concerns the third phase of the model building process,

model refinement and selection.

After completing the regression and aptness analyses, predicted PC values were obtained for
the aggregate model for use in subsequent correlationz! analyses. Recall that the logit response
function in Equation 25 yields predicted values not for PC, but for the logit of PC. As a result,
predicted PC measures were derived from the predicted logits using Equation 26.

oo

—

PC = (26)

1 4 ePCrogu
where

predicted productive capacity

~
~
i

3)
]

the predicted logtt of productive capacity.

>
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3.83.4.8 Analysis of the Aggregate Measures. Once the predicted aggregate PC
measures were computed, they were correlated with other measures of job performance to include
JKT (Job Knowledge Test) scores, GPC {supervisor's global I’C‘ratings), and MTPC (mean timed

PC). The measure of correlation was r, the Pearson correlation coefficient.

The variable MTPC was created by AL/HRM using the PC formulation ¢/t*, an inversion of
the formulation of Carpenter and others (21) {7). MTPC was computed as the average PC across a
limited number of tasks where the t values where derived- through actual timing of tasks as opposed
to supervisor estimation. Because MTPC was computed from ¢/t values, higher values indicated
lower performance levels. This means that a negative Pearson correlation coefficient would he

expected between MTPC, and a variable whose higher values indicate better performance.

This correlational analysis was to provide insight as to whether the aggregation method,
weighting scheme and fitted model were effective in capturing an individual's true overall PC.
Significant correlation with other performance measures was to be interpreted as evidence that the

aggregation method, weighting scheme and fitted model were appropriate.

Last, the fitted logistic response surfaces were plotted for the weighted aggregate variable to
provide a graphic illustration of the fitted model. Surfaces were plotted for the entire effective range
of the predictor variables. Finally, response surfaces rescaled to zero/one space (sce Equation 17)

were also plotted to increase the interpretability of the plots.
il

[ A
r




IV. Results

The preceding chapter specified in detail exactly what steps were taken to meet each research
objective. This chapter discusses the results of applying those steps and offers further discussions

on the significance of the research findings.

4.1 Formulation of a Productive Capacity Measure from Estimated Task Performance Times.

As previously indicated, the primary response data used in the analyses were the supervisors’
estimates of the subjlects' task completion times. In their raw form, the time estimates tended
to widely vary within a task, sometiines covelring an u;\believable range of values. This implied
the need for editing of the raw time data to control for serious outlying cases. Table 10 provides
summary statistics for the raw time estimates, illustrating the sometimes extreme variation for a
task. For instance, note task G171 which shows an extremely wide range of values for the raw
estimated times. The raw times ranged from a minimum of one to a maximum éf 2880 minutes: It
was considered highly unlikely that the true range of times is so variable. This led to the editing

as described in Section 3.3.1.2.

After the edited estimated times were computed, the task-level PCs were computed using the
t* /t formulation of Carpenter and others (5:21). These required further editing and rescaling as
described in Section 3.3.1.4. Table 11 shows the summary statistics for the final edited and rescaled

task PCs.

For the final edited values of the task PCs, the means ranged from .12 to .56 across tasks.
The standard deviations for the tasks ranged between .12 and .22. Note, in particular, that in only
two cases was the coefficient of variation, CV', noticeably greater than one (for task 1299 and 1332).
‘I'his is a very general indication that the task-level PC data are not highly dispersed relative to the

task means. and thus are probably not highly influenced by extreme outliers. In contrast, Table 10
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Table 10. Summary Statistics for the Raw Estimated Task Performance Tines (in Minutes)

[ Task | n | Mean | S.D. | Minimum | Maximum | CV |
k120 | 201 11.38 5.16 2.00 35.00 45
E143 | 201 9.70 3.90 - 2.00 30.00 40

_—l“153 194 17.43 19.60 © 5.00 270.00 | 1.12
F154 | 201 17.17 9.05 5.00 120.00 .53
F155 | 200 | 15.06 6.62 3.00 60.00 44
F157 | 200 17.59 8.89 5.00 90.00 51
F162 | 200 24 .61 16.91 4.00 240.00 .69
G171 | 200 82.88 | 215.76 1.00 2880.00 | 2.60
G179 | 196 89.36 57.81 1.25 720.00 65
G181 | 199 | 274.84 | 341.74 250 2880.00 | 1.24
H202 | 201 14.43 | 126.60 2.00 1800.00 | 8.77
H203 | 200 27.25 66.83 10.00 720.00 | 2.45
H209 | 198 33.51 12.05 15.00 90.00 .36
H215 | 200 20.32 9.60 10.00 90.00 47
H236 | 200 12.89 11.35 2.00 120.00 .88
H237 | 200 10.37 6.31 3.00 60.00 .61
H238 | 199 25.87 21.92 .60 300.00 .85
1247 200 10.31 6.06 1.00 60.00 .59
1248 200 13.29 12.92 3.00 180.00 97
1251 195 50.94 18.06 1.00 150.00 .35
1255 199 | 154.62 54.22 3.00 480.00 .35
1260 201 24.47 62.98 8.00 600.00 | 2.57
1264 200 70.57 71.74 1.00 720.00 | 1.02
1275 | 200 67.49 | 213.94 1.00 3060.00 | 3.17
1283 201 63.82 | 189.14 1.00 2700.00 | 2.96
1284 200 21.39 11.77 53 120.00 .55
1286 200 57.94 27.71 20.00 280.00 48
1299 | 201 | 121.24 49.39 1.92 480.00 41
1300 201 19.93 7.29 5.00 60.00 37
J332 198 | 142.85 | 209.05 2.75 2880.00 | 1.46
J340 198 33.78 12.91 3.00 120.00 .38
J347 | 198 65.07 55.38 1.00 480.00 .85
J355 198 42.42 19.18 15.00 165.00 45
L4066 | 200 36.80 34.64 1.00 480.00 .94
L421 199 28.99 12.88 10.00 120,00 44
L436 196 32.27 25.55 10.00 285.00 .79
L437 | 200 10.28 6.72 2.00 60.00 .65
M444 | 196 65.10 39.21 1.00 480.00 .60
M446 | 200 63.68 | 201.76 20.00 2880.00 | 3.17
M447 | 195 20.19 14.08 5.00 180.00 .70
N475 184 20.63 8.31 3.00 60.00 40
N477 | 201 37.12 13.14 15.00 120.00 .35
N486 | 201 80.10 27.63 1.00 240.00 34
N487 | 201 40.34 | 105.26 10,00 1500.00 | 2.61
N488 | 201 49.46 13.40 20.00 90.00 27
N494 | 200 16.73 34.67 5.00 420.00 | 2.07
N503 | 201 15.69 6.83 3.00 60.00 44
P549 | 201 14.23 6.61 1.0 60.00 46
P554 199 18.48 17.55 5.00 260.00 .95
P555 | 200 39.62 22.64 4.00 300.00 57
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Table 11. Summary Statistics for the Final Edited Task Productive Capacity Measures

(

Task | n [ Mean [ S.D. [ Minimum | Maximum [ CV |

E120 | 201 | .24 | .18 01 99 76
Eid3 {200 | 28 | .19 01 .99 67
F153 | 194 | .45 | .16 o1 99 36
Fis4 {201 | .38 | .18 .01 99, 46
Fi55 {200 | .32 | .19 .01 99 .59
F157 | 200 | .34 | a8 .01 99 51
Fi62 [ 200 { .35 | .16 01 99 46
G171 [ 200 | .26 | .15 01 99 58
G179 {196 | .29 | .19 .01 .99 67
ciel | 199 ] 26 | 20 .01 99 76
Hz02 [ 201 | 50 | .15 o1 99 31
H203 | 200 | .36 | .21° .01 99 37
H2o9 | 198 | .38 | .20 .01 99| 53
H21s {200 | 45 | .22 01 99 49
H236 | 200 | .30 | .22 .0 .99f 12
H237 | 200 | .35 | .21 .01 99| 59
H23s {199 | .35 | .16 .01 99/ 45
1247 | 200 | .24 | .17 01 99 72
1248 | 200 ] .40 | .18 .01 99 .45
1251 | 195 | .25 | .19 .01 99! 75
1255 | 199 | .26 .18 .01 .99] 72
1260 | 201 | .45 | .18 .01 99! A0
1264 J 200 .19 | a4 .0l 99/ 72
1275 | 200 | .38 | .16 .01 99! 42
1283 } 201 | .40 | .17 .01 99! 42
128¢ {200 | .19 | a3 .0l 99/ X
1286 {200 | .37 | .18 .01 .99 49
1209 {201 ] .13 | .19 .01 99! 1.43
1300 {201 ] 34 | .19 61 99| 57
J333 (198 | .15 | .15 o1 99 1.02
J340 (198 | 21 | a2 .01 99/ 57
Jaa7 198 | 31 | s 0 99 60
3355 {198 [ .40 | .19 01 99 48
L406 | 200 | .28 | .19 01 99 70
La21 {199 | 35 | 21 .01 99 60
La36 | 196 | .39 | .18 o1 99 46
L437 (200 | .32 | .20 .01 99 62
Maaa | 196 | .12 | .12 01 99 98
M4aa6 { 200 { 47 | a7 .01 99 35
Ma47 [ 195 | .36 | .19 .01 99 53
Na35 | 184 | .35 | .19 01 09 55
Na77 201 37 | a9 01 99 53
N4s6 | 201 | .20 | .18 .01 99 91
Nas? | 201 | a4 | a7 01 99 39
N4sg | 201 | .36 | .20 .01 99 54
Ngoa | 200 | .42 | a9 0l 99 45
Nso3 | 201 | 28 | 20 .01 99 74
P5a9 | 201 | .20 | .19 01 oy 65
P5s4 {199 | .48 | .13 0 99 27
pPsss | 200 | 26 | a2 01 99 46
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. doing particular types of tasks.

Table 12. Average Percent Time Spent and Computed Task Weights by Duty Area

Duty Skill Level Task
Area 3 5 7 | Weight
6% | 10% | 17% 11
18% | 14% | % 13
6% | 5% | 2% 4.33
13% | 12% | 7% | 10.67
14% |1 13% | 7% | 11.33
5% | 5% | 2% 4
3% | 3% | 2% 2.67
3% | 4% | 2% 3
11% | 8% | 3% 7.33
8% | 6% | 4% 6

TVZ2ZcCw—TOmm

of summary statistics of the raw times indicates the coefficient of variation was greater than one
for 13 tasks. It is thus apparent that the editing was effective in controlling the eflects of outliers

and getting the variance to more reasonable levels.

4.2 Selection of a Task Weighting Scheme.
After computing the task-level PCs, it was possible to weight them according to the weighting
scheme described in Section 3.3.2. Recall that the weighting scheme actually applied weights to

each job duty area, and all tasks from a particular duty area were assigned the same duty area

weight. Further recall that the weights were based on the relative amount of time airmen spend

Table 12 shows the average percent time spent on each represented duty area broken out by
each represented skill level. It also shows the computed weights by duty area. Again. the weights

were an average of the average percent time spent across skill levels

4.3 Aggregation of the Task-Level Data into an QOverall Productive Capacily Measure.

Once the task-level PC measures were computed and the task weights derived. it was possible

to compute the aggregate or overall PC measure. Recall that aggregate PC' was defined as a
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Table 13. Aggréga.t.e Productive Capacity Measures Created

Variable | Description

PCuwavg | Unweighted average of the final edited task-level PCs per individual.
PCyavg | Weighted average of the final edited task-level PCs per individual.
T"Z'wm,, Predicted value of the unweighted. average, PCuwaug-

FE’WW Predicted valur of the weighted average, PCyuwavg-

Table 14. Sumniary Statistics for the Aggregate Productive Capacity Measures

Variable | n | Mean | S.D. | Minimum | Maximum
PCuwavg | 201 .33 .10} .02 .66
FCuavs | 201 | 34 | .10 02 . .68
PCuuavy | 169 | 32 | .04 14 36
PCuavy | 169 32 | .04 15 37

‘weighted average of the task-level PCs for an individual (see Figure 17). Also recall that a simple
unweighted average was computed for comparat'ive purposes. Table 13 provides a brief description

of each aggregate variable created, for further reference.

The predicted values described iﬁ Table 13 were obtained from the estimated regression functions
which are discussed in the next section.

Table 14 provides some summary statistics and Figure 21 provides histograms for the ag-
gregate variables to give some insight into their distributions. Also, Table 15 shows the Pearson

correlation coefficient between the weighted and unweighted versions of the vatiables.

Table 15. Correlation Between the Weighted and Unweighted Aggregate Productive Capacity

Measures
Unwecighted | Weighted Correlation
Variable Variable Coefficient
Pcuwcug PCwauy > .99
(n =201)
PCuuavyg PCyaug > .99¢
(n = 169)

Superscript a indicates sigmificance at the a = .05 level.
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Figure 21. Histograms of the Aggregate Productive Capacity Measures
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From the histograms of the aggregate variables (see Figure 21} it appears that the predicted

values are negatively skewed. This is a reflection of both the shape of fivted response curves and the

experience and aptitude levels of the sample. In other words, most of the sample possessed levels

of the predictor variables which corresponded to the higher response points on the fitied response

surface. Again, the reader is referred to the next section for discussion of the fitted response

surfaces.

The summary statistics (see Table 14) and the Pearson correlation coefficients between the

weighted and unweighted versions of the aggregate variables (see Table 15) indicated that the

task weighting had negligible effects on the aggregate variables. The highly similar statistics and
correlation coefficients very near one suggest that the weighted and unweighted versions of the
variables are measuring approximately the same attributes. Thus, it appears that the weightiing

scheme and subsequent weighted aversging were ineffective in defining overall PC beyond what

could be offered by simple averaging.

4.4 Development of Prediction Models.

As previously mentioned, full second-order logistic models were fit to PC both at the task
level and at the aggregate‘ level. Recall that the logistic model was linearized through formation of
the logit response function, and the parameters were then estimated throagh ordinary least squares

estimation. Table 16 summarizes the results of the logistic model regressions for the tasks.

Table 16: Regression Results for the Full Second-Order Logistic Models
at the Task-L.vel

o b5 o) 33 Fa i3
Task (x10=%) | (x107%) | (x10"Y) F | R
Intercept Apt? Ezxp? Aptx Ezp | Apt Ezp |
E120 -1.70 4.49 ~2.02° ~5.11° -.040 | .064° | 4.83° | .13
E143 -3.57 -1.57 -1.96° -1.92 037 | .038° | 2.44° | 07
F153 -.489 636 -~1.39° 1.47 -.010 | 012 | 2.86* | .08
Fi54 —-§.22° ~10.0° | -1.15® ~-3.83% .169° | .053° | 5.04° | .13
F155 —-6.07° -5.82 —~2.50° -1.89 Jd01 | oes10 | 3960 | .11
F157 -3.42 -3.88 -.633 -1.13 059 | .02j 08 | .03
F162 -2.56 -1.91 --1.68% .i10 031 | 0258 | 298 | 08
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Table 16: (continued)

Bo -7 B2 B3 A4 £s
Task (x10=%) | (x10™*) | (%107 %) b IR
Intercept Apt? E1? Aptx Ezp | Apt | Ezrp
G171 -4.61 -3.34 -.881 313 066 | .038° | 1.06 | .03
G179 -4.19 -3.48 -3.91° 3.00 048 | 035 | 4.86° | .13
G181 2.73 10.3 -1.76 -.002 -144 | 029 | 1.87 | 65 |
H202 | —5.04° -6.38 -.100 -1.98 1i3® | .02z | 1.29 | .05
H203 -5.46 -5.53 ~1.53% 2.31 116 | .0a0® | 231 | 07
H209 -1.96 -1.80 -1.42 546 027 | 012 ] 63 |.02
H215 -1.59 1.04 -2.21° -1.12 001 | 040 | 1.65 | .05
H236 | -9.23° -11.7% | -2.2¢° -.838 A89% | 037 | 2.75° | .08
H237 | -6.40° -4.46 -40] -5.77* 108 | .048° | 2.15° | .06
H238 -2.92 -2.58 1.91° -1.19 053 | -.007 | 3.02° | .09
1247 -2.97 -2.48 -.940 264 | 037 | -.007 | .93 |.03
1248 -4.03 -4.23 ~1.69° -.128 072 | .025 | 2.65% | .08
1251 -1.06 1.07 -2.90% 2.93 -024 | 013 | 2.22% | .07
1255 -4.67 -3.43 —2.93° 57 060 | .031 |3.354°1 .10
1260 1.22 3.25 -2.04° 2.94 -.051 | .001 | 3.50° | .10
1264 -3.99 -2.79 -2.41° -.037 042 | .034° | 2.70% | .08
1275 -1.75 -1.63 —1.49° .867 021 | 016 | 217% | .06
1243 .083 -.022 -1.48° 1.88 -013 | 005 | .86 | .02
1284 -2.91 -2.09 -1.61° 3.32 023 | 002 | 2.42% | .07
1286 —5.81% -6.74 -1.29° -1.02 113 | 031 | 2.43% | .07
1299 | —10.68% | —14.0® | -3.29° 2.01 .207% | .026 | 2.76° | .08
1300 -3.46 -3.81 -733 2.50 059 | -.004 | 1.77 ] .05
Ja32 | —8.22° -9.22 ~2.41° 428 144 | .031 | 3.28% | .09
Jado -1.59 2.79 -1.10° -2.12 ..025 | .029° | 2.45° | .07
J347 .2.25 2.47 -2.45° -.140 -015 | .037 | 342° | .10
J355 -2.08 .160 -1.59° -1.26 012 | .032° | 1.88 | .06
L406 -5.34 -5.55 —1.97° 089 091 | .0z4 | 1.98% | .06
L421 -3.28 -2.88 -2.61° - 473 046 | .037° | 3.00° | .09
L436 3.33 6.31 -.552 1.01 -.100 | -.005 | .500 | .02
L437 | -11.49° | -16.1° -.944 -4.36 258 | .052° | 3.17* | .00
M444 -.273 3.83 ~1.74° 1.94 -.063 | .007 | 1.08 | .03
Md46 -2.57 -2.88 -2.22¢ 1.73 042 | 023 | 5.04% | .13
M447 -5.11 -5.65 -.932 -1.07 099 | .020 | 1.05 | .03
N475 | —6.93° -10.5° -1.17 970 .156° | 012 | 1.59 | .05
N477 2.76 6.45 ~2.10° 2.79 -107 | .012 | 2.87° | .08
N436 -6.14 -3.07 -.130 -10.3 081 | 083° | 2.44° | .07
N487 -2.86 -1.52 -817 -1.71 043 | 023 | 1.78 | .05
N488 2.49 7.19 -1.65° -.29% -103 | 020 | 1.36 | .04
N494 -3.22 -2.40 -401 -1.78 051 | 027 ! 177 | .05
N503 -3.95 -1.40 -R18 .3.57 40 | .045° | 1.97% | 06 |
P549 -4.15 -5.02 ~1.04 181 078 | 011 | 49 | .01
P554 -2.82 -4.23 -.371 067 066 | .008 | 1.03 | .03
P555 632 4.92 -1.35" -.481 -068 | .022 | 2.09° | .06

Superscript b indicates mgnificance at the « =

10

level

Superscript a indicates significance ar the a = 05 level




The regression results in Table 16 {or the tasks indicate some consistent results. First, the

R%s were consistently low. ranging from .01 to .13. Second, aptitude di.d not appeat to have much
_ihﬂuence on task PCs as indicated by the statistical significance of the corresponding parametets.
The associated aptitude coofﬁcients, D1, 34, or both, tested significantly different from zero at the
a = .05 level for only two tasks. Third, expcr;ence seemed to be more strongly related to PC with
either B2, 35, or both, testing significantly different. from zero at the a = .05 level for 33 of 50 ta.s;ké.
It is important. to note that the aptitude/experience interactioq coefficient, 33, tested significantly
different from zero for only four tasks. Qverall, these re. ults were in partial agreement with those
of Schmidt and others and Alley and others (1) (36) . They also found that there does no£ appeat
to be an aptitude/experience inter.:;ct.ion affecting job performance. However, they found aptitude

to be an important determinant of job performance.

Overall, the task-level logistic models for predicting PC did not perform as well as AL/H RM 's
task-level learning curve models for predicting untransforined estimated times (38). More of the
learning curve models (41 of 50) were significant anu they yielded generally higher R?s (ranging
from .01 to .20). Bi;t, as mentioned. learning curve models are onl',v useful for determining how fast

a piece of wor.. can be completed given the worker’s aptitude and experience level. A transformation

“must still be applied to the time data to provide a standardized, interpretable work output measure

like PC. A second drawback of the learning curve model is that it is difficult to develop a meaningful
model for predicting overall performance measures when the appropriate level of job specificity for

data collection is the task level. There seems to be no meaningful way of aggrogating task-level

performance times into an overall measure that could be predicted.

Because of the large number of tasks studied, detailed residual analyses to check model
aptness were not performed at the task level. An aptness analysis was performed for the model for

predicting the aggregate measure.
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Table 17. Regression Results for the Full Second-Order Logistic Model at the Aggregate Level

3 B P 133 Ba Bs
Variable (x107%) | (x107%) | (x1074) Fo | R?
Intercept Apt? Exrp® | Aptx Exp | Apt | Ezp

[ PCuavg | —297° [ -210 [ -1.24° [ -610 [.040 [.023° [6.07° [ .16 |

Superscript a indicates sigificance at the o = .05 level.

Finally, in reference to the task-level models, recall that they were run primarily as a screening
exercise to provide insight as to whether any model terms from the second-order model could be
dropped. The task-level models cbviously indicated that the terms including the aptitude variable
were potential candidates for removal from the model. The aggregate model was analyzed, in part,

tn further explore this possibility. ‘

Table 17 provides the regression results for the aggregate variable, PCyavg, regressed on apti-
tude and experience using the linearized logit response function. Table 17 contains some interesting

results. In predicting the aggregate measure, experience seemed to be an influencing factor. This
|

was indicated by B; and 85 both testing significantly different from zero. The aptitude coefficients,
|

B and (34, tested not significantly different from zero. Ove:‘rall, the results of the aggregate mode}

_paralleled the results of the task models in that experience%was an influencing factor. but aptitude
i .

and the aptitude/experience interaction were not. Theseg results again are in partial agreement

with those of Schmidt and others and Alley and others (1) V(36). They found no interaction effects
but in contrast, they did find significant aptitude effects. In comparison to the Air Force's other
PC studies. the aggregate model R? was comparable to those found for the AGE specialty by Fa-
neufl and others (13:10). They reported R%s of .17 and .20 using the ASVAB E and M scores as

aptitude variables, respectively. But, the R*s of the current study were much lower than that for

the aggregate miodel of Carpenter and others (R*=.44) for specialty 3283X0 (5:22).

As mentioned, the results of the regression using the full second-order logit response model
for PCyavg showed that none of the parameters for terms which included the aptitude measure

tested significantly different from zero. This was further indication that the aptitude predictor was
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Table 18.  Forward Stepwise Regression Results for the Second-Order Logistic Model at the Ag-
gregate Level

Variable Bo By B2 Ba B4 Bs
> ‘ (x107%) | (x107%) | (x107%) F | R®
Intercept Apt? Ezp® | Apt x Ezp | Apt | Exp

[ PCuov, | -123¢ T 0 [ -1.31° ] 0 ] 0 J.o19°] 12692 ] .13

Superscript a indicates significance at the a = .05 level.

Table 19. ANOVA Table for the Aggregate Productive Capacity Measure after Forward Stepwise
‘ Regression '

Source of

Variation SS df MS Fo

Regression  5.73 2 . 2.87 12.69¢
Error 37.50 166 .23

- Total - 43.23 168

Superscript a indicates significance at the a = .05 level

a candidate for removal from the model. A forward stepwise regression was then run beginning with
the full second-order model to determine if the aptitude terms could be dropped. The criterion for
a term’s entry into the model was F statistic significance at the a = .05 level. The same criterion
was used for a term'’s departure frorﬁ the model. The forward stepwise regression did in fact drop all
terms involving the aptitude variable from the model. Table 18 provides the results of the stepwise

regression and Table 19 provides the final ANOVA table .

The model after stepwise regression was selected as the final model, provided that it would
meet the linear model assumption of normality of error terms (¢ ~ N(0,0?)). Figure 22 provides
the results of an aptness analysis for the final model to check the normality assumption. The figure

includes a plot of the model residuals vs. fitted values a normal probability plot of the residuals.

The top plot in Figure 22, a plot of the residuals vs. the fitted values, shows a fairly even
band of points around the zero-residual line. This indicated that the variance of the residuals and
thus the variance of the actual ervor terms is fairly constant across differing levels of the predicted

values. This homoscedasticity is, of course, desirable. If the error variance was not constant across
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Table 20.  Correlation Between the Aggregate Productive Capacity Measures and Other Job Per-
formance Measutes '

L T JKT [ GPC [ MTPC [
PCyavg | .08 A4° 13
(n = 193) | (n = 199) (n = 58)
PCyaug | 220 | .25° =27
(n=169) | (n=167) | (n=51

Superscript a indicates significance at the @ = .05 level.

Superscript b indicates significance at the a = .10 level.

the different levels c;f the fitted values, then the model would not be appropriate for the fitted region
since it is assumed that the error terms, ¢, are distributed N(0,0%). The bottom plot, a normal
probability plot, shows a higH degree of linearity toward the center of the data with a few outliers at
each end showing clear nonlinearity. Linearity is desirable because it indicates the actual residuals
and their expected values under the normal assumption are highly correlated. Linearity implies
normality of the residuals'and thus normality of the model error terms. The nonlinearity at the ends
of the plot was not overly worrisome since it is due to a relatively small number of outlying points.

Overall, the conclusion was that the fitted second-order logistic model with aptitude excluded was

appropriate for the data.

4.4.1 Correlationa‘l Analysts of the Estimated Model Results. After the aptness analysis,
predicted values of PCyauy (F?J....,,,) were oi)tained from the f
model assessment, it was determined that the correlation between the final model’s predicted values
and other job performance measures would offer insilght as to the model’s effectiveness. Table 20

shows the correlation between the computed and predicted aggregate variables and other previously

defined job performance ineasures collected under the Productive Capacity Project.

Table 20 indicates that the aggregate variable computed from the task-level PC measures,
PCyavg, correlated more highly with GPC than did the associated predicted variable. ﬁ'...,,,.y.

This is not terribly surprising since GPC, like PCyayy. is also the result of supervisor estimation.
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Table 21. Correlation Matrix of the Other Job Performance Measures

[ [ JKT ] GpC | MTPC |
JKT 1.0¢
(n = 196)
GPC 12 1.0°
(n=191) | (n=199)
MTPC | ~.44° -.18 1.0¢
(n = 60) (n =57) (n = 60)

Superscript a indicates significance at the a = .05 level.

The predicted values, Fb.mg, corrclated more strongly with the objectively-derived measures,

JKT and MTPC.

There seemed to Le a pattern of higher correlation between the predicted values and the more
objective measures. A similar pattern existed between the computed average measure, PCyquvg, and
the more subjective measure, GPC. This seemed to indicate that the subjectively-derived measures
are measuring different dimensions of performance than the predicted variable and “he objective

variables.

One final noteworthy finding is the relatively low correlation between mean PC derived from

actual stopwatch times (MTPC) and computed average PC derived from supervisor estimates

(PCyaug). This is an indication that the supervisors’ ratings may be measuring a different dimen-
sion of performance than the actual stopwatch times, or a great deal of noise resulting from rating

biases of the supervisors.

To summarize the results of the correlational analysis, PCy gy correlated more strongly wit‘ix
;

|
GPC than did the associated predicted values. This seemed to indicate that predicted values, and
thus the model, captured less of global PC (as judged by the supervisors in their GPC ratings) than|
the computs 4 average data. This may be an indication that the model is not measuring what it is

supposed 1o-—overall PC. But, on the other hand, the predicted values did correlate more highly

with the other objective measures indicating that the model is predicting job performance in at |
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least one respect. The assessment of the model through correlational analysis thus gives conflicting

results.

Table 21 was included simply to give the reader an indication of how the other job performance

measures relate to one another. -

4{.4.2 Graphical kcprcsen_talion of the Estimated Logistic Models. The preceding regres-
sion results and correlational analyses were helpful in providing insight as to how the predictors
potentially influence PC, and how the aggregate variables (computed and predicted) relate to other
job performance measures. This section is intended to provide additional insight into the estimated
model by providing a graphical representation of the fitted models. Figure 23 shows the fitted
response curve for the final model to provide a graphical representation of the relationship between
experience and PC. It is plotted over the effective range of the predictor, experience (one to 170
months). Figure 24 shows the plotted surface for the full second-order model prior .to the stepwise
regression, to show the relatively mild effects of aptitude and interaction on estimated PC. Recall
that in the stepwise regression, the aptitude terms were dropped. The full model is likewise plotted

over the effective range of predictors, aptitude (M score 45-99) and experience (one to 170 mouths).

The fitted response surfaces were obtained by entering the logistic model parameter esti-
mates into the logistic model function. Equation 27 shows the equation for the final model, and
Equation 28 shows it for the full second-order model.

cﬁ‘o+ﬂ.2$g+ﬂ.afz
(27)

PC. = ——
WaAVIFinat Modet l+ e.”o+ﬁzr§+5ar2

where
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I”Z’waugh_., moses = predicted weighted average productive capacity

from the final model after the slepwise procedure

E = months of job experience
Bo = —1.231482

Ba = -.000131

Bs = .019038.

eﬁ.o+ﬁ.| 22452534032, 12 +0sz1+0s12

ﬁawauyr.” Modet — 1 + ePotPrzl 402234 fsz1 22404140512 (28)
where
ﬁbww,““ moes = predicted weighted average productive capacity
fror: the full second-order model
z) = ASVAB Mechanical percentile score
zo = months of job experience
Bo = -2.969180
i) = -.000210
B = -.000124
Bs = -.000061
Ba = .039573
Bs = .022894.

To increase the interpretability of the fitted response curve and surface, the entire surfaces
were rescaled to zero/one space much like the edited task-level PC values. This was to ensure
a minimum predicted PC of zero and a maximum of one so that PC could be interpreted as a

proportion of maximum possible output. Equation 29 mathematically shows the equation for the
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rescaled surfaces. The rescaled response surfaces are shown in Figure 25 and Figure 26 for the final

and full models, respectively.

PCuyavg ~ Pgiﬂvym.n . (29)

PCyav =
Rescaled B
' : PCW“”QQ:: - Pcwa"ynuu

where
T’Z’wwn.mm = rescaled predicted average mean productive capacity
Pz’wovgm;, = Minimum value of }”Z’wa,,g
Faww’m,, = Mazimum value of ﬁéwm‘

The plotted response curves and surfaces all show PC initially increusing with experience
until it reaches a maximum, and then begins to steadily decrease. In ihe case of the plotted surface
for the full second order model, this is shown th occur at all levels of aptitﬁde. The plots for the
full model also show PC generally increasing with aptitude at all levels of experience. There does
appeat to be a bea.k aﬁd a slight decrease in PC with increasing aptitude. Once again, in reference
to the plot of the full model, very little interaction was present, as indicated by the fairly con§tant

eflects of one predictor with varying levels of the other.

Before drawing conclusions, it is important to recall that the models did not fit the data very
well (for the!full model R? = .16, and for the final model R? = .13). Also, recall from Table 9,
the two-way distribution of aptitude and experience, that there were relatively few data points
indicating experience beyond 96 months. The model must thus be interpreted cautiously bevond
this point. These two facts suggest that the response curves and surfaces should not be viewed
with exactness| but in general terms. They should serve only to provide some possible insight as
to how the factors might eflect eachothier.

The decreasing PC with increasing experience over a portion of the curves and surfaces was

an unexpected result. This seemed 10 indicate that there is some point in an airman's career
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where he or she may begin to experience skill degradation, or decreasing PC or the types of

tasks studied. The estimated logistic function for the final model was put into GINO (General
INteractive Optimizer) to identify exactly where the maximoem PC point on the curve occurs, and
thus where the performance degradation may begin {22). Maximum PC occurs on the surface at
about 71 months of job experience. This seemed to indicate that after approximately six years of
job experiencé, the capacity to perform hands-on production-type job tasks decreases for 454X1
personnel. This result might be explained by the fact that Air Force enlisted personnel typically
begin to make the transition into supervisory roles at around the six year point. This means they
begin to spend less time practicing production-type tasks so skill degradation might reasonably be
expected. This is not to say that an airman’s overall performance decreases after the six year point,
only performance on the types of tasks studied under the Productive Capacity Project. Hands-on
performance on such types of tasks becomes decreasingly important as airmen advance in grade
and move on to supervisory roles. A more appropriate measure of pelrformance for more senior

members would most likely have to include measures of their ability to supervisor.

A final point to be made concerning Figure 24 and Figure 26 for the full model is that
maximum PC occurred near an aptitude score of 84, according to GINO. In looking at the plotted
surfaces, there does not seem to be a signiiirant decrease in performance beyond this score. There
is simply no strong indication that PC truly does peak and then decrease with increasing aptitude.
Since the model provided significantly less than a perfect fit, it may simply be enough to note that

PC tends to increase with aptitude. in general, at all levels of experience.
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V. Summary, Conclusions and Recommendations

Recognizing that the Air Force could greatly benefit from acquiring the ability to forecast
the future job performance of its personnel, this research effort set out to develop experimental,

descriptive regression models for predicting the job performance of personnel in specialty 454X1,

“Aerospace Ground Equipment. Hopefully, this modeling activity will serve to help Air Force plan-

ners take another step in their iterdtive and on-going quest for adequate job performance models.

The research objectives, as presented in Chapter 1, were asfollows:

1. Formulate a Productive Capacity Measure from Estimated Task Performance Times

2. Select a Tésl: Weighting Scheme

3. Aggregate the Task-Level Data into an Overall Productive Capaci'ty Measure

4. Develop Prediction Models

Data for the analyses were collected by the Air Force under its Productive Capaciiy Project
(21). The primary dependent '(response) variables were raw estimated task performance times for

airmen in specialty 454X1, and the independent (predictor) variables were mechanical aptitude and

job experience.

The following sections provide a brief recapitulation of the research methods used to meet

these research objectives and contain a summary of conclusions and recommendations for further

rescarch.

5.1 - Summary and Conclusions.

5.i.1 Formulating a Productive Capacity Measure from Estimated Task Performance Times.
The primary response data analyzed were raw estimated task performance times for 204 airmen
in specialty 454X1, Aerospace Ground Equipment. The estimated times were provided by the

airmens’ supervisors for 50 job tasks commonly performed by personnel in the specialty. An initial

in




research objective was to determine how to transferm the task-level time data in'o measures that
are interpretable and able to be aggregated across tasks. At the task level, an interpretable measure,
PC, was formulated according to the method proposed by Carpenter and others, t*/t (5:21). In the
formulation, t* represented an estimate of the fastest possible time in which a given task could be
completed, and ¢ represented the estimated time for an airman to complete that task. The measure

can be interpreted as an individual’s output as a proportion of maximum possible output.

Several considerations had to be accounted for in computing task-level PC Most importantly,
the raw estimated performance times from which the PC measures were derived tended to he highly
variable with an often unbelievable range of values within a task. This indicated a need for editing
to control for influential outliers. As a result, several stages of data editing were applied to the raw

estimated times and to the computed PCs to obtain reasonable distributions of the task-level i'Cs.

5.1.2 Selecting a Task Weighting Scheme. Since PC is a quantity-based measure of work
output capability, it seemed appropriate to weight the tesks by the relative amount of time a rmen
spend doing Lheml on average. This was to account for the fact that airmen may spend varying
amounts of time on different tasks, some of which they are productive on, and some on which they
are not. Tasks were weighted by a factor derived through averaging Average Percent Time Spent
Performing Dulies data (collected by the Occupational Measurement Si]ué.dron) across relevant
skill levels. Duty area weights were applied to tasks from that area. Greater weight went to those

tasks performed most frequently.

The applied weighting scheme had little effect on the computed aggregate varivables. The
weighted average measures, when compared to their unweighted counterparts. had highly similar
descriptive statistics. The weighted and unweighted versions of the variables were also highly cor-
related. The conclusion is that the applied weighting scheme had no noticeable effect on aggregate

PC.
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5.1.8 Aggregating the Task-Level Data into an Overall Productive Capacily Measure. At
the overall or aggregate level, PC was defined and computed as a weighted average of the task-
level PC values for each experimental subject. Along with weighted averaging, the task-level PC
data were aggregated through simple, unweighted averaging for comparison purposes. The need .’
for aggregation existed because overall measutes are of more importance in the bigger scheme of |
manpower modeling and planning. Ta;sk-level information is important but manpower decisions-
usually cannot be made based on an individual’s predicted performance on single tasks. Also,»
modeling at the task level for each of the approximately 250 AFSs would simply be too cumbersome.
Because jobs tend to be multifaceted and dynamic, and because task-level modeling is potentially

too burdensome, it was desirable to compute and model an aggregate measure.

5.14 ch_loping Prediction Models. Both task-level and aggregate PC measures were
regressed on aptitude and job experience using a second-order logistic model. The aptitude variable
used was the Mechanical percentile score from the ASVAB obtained by each subject upon applying
for enlistment. The experience variable used was the subjects’ self-reported job experience at the

time the estimated times were collected.

At the task-level, R%s were consistently low for the logistic model, ranging from .01 to .13.
This may indicate that there are other predictor .varia'.bleﬁ influencing PC that were not addressed
in this thesis. Anotﬁef possible explanation of the low R?s is that the assumption of validity and
reliability of the PC data collection instrument and method is not sound. Supervisors are known
to be. subject to many types of biases which affect their judgements concerning the performance of
their personncl (6:82-84). The low R*s may be indicative of the fact the supervisors are inttoducing
notse into the data from such biases, and thus adversely affecting validity and reliability, and thus

model fit.

Residual analysis of the aggregate logistic model indicated that it was reasonably appropriate

for the data. The model for predicting the aggregate measure yielded results that were comparable
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to the task-level model results. Experience seemed to be a significant predictor while aptitude
and the aptitude/experience interaction did not. The model R® for the full second-order aggregate
logistic mod.el was .16. The full second-order model was subjected to forward stepwise regression
which indicated that all terms involving the aptitude variablé could be dropped from the model.
The final model involved a constant intercept term and linear and quadratic experience terms. The

final model yielded an R? of .13.

After the logistic model parameters were estimated, predicted PC values were computed for
the aggregate measure. These were correlated wi.h other subjective and objective job performance
measures collected under the Productive Capacity Project. The predicted values showed correla-

tions significantly different from zero for each measure.

Fitted response sucfaces for the estirnated aggregate models were plotted and they indicated
a pronounced peak for PC with respect to experience. There was some evidence that PC may
 begin to decrease for AGE personnel after about the six year point in their career. This may be
reflective of skill degradation which may nceur as airmen losé practice on hands-on type work as
the tra"nsition tc supervisory roles is made. It may also be the result of having only a few data
points for ‘higher levels of experience, or it may‘ be simply an artifact of the relatively low degree

of model fit.

Overall, the level of model fit (R?) tended to be low, but comparable to that found for similar

| . o
studies (5) (13) (38). R?s of the current magnitude indicate that more work must be done to create

more\robust prediction models.

x
\
\

3.2 ecommendations.

e previous section provided a brief summary of the research objectives, methodology and
findings. It did not, however, discuss the additional research questions which arose during the effort.

As mentioned in the first chapter, exploratory or descriptive research such as this often spawns as
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many research questions as it answers. This section will address some of the issues which came to
the forefront in the current effort. These issues will be discussed in the context of recommendations

for further research.

5.2.1 Formulating the Productive Capacity A;easurc'. The current emphasis in Air
Force job performance measurement is on using performance time data in deriving job performance
measures. This is because most Air Force manpower modeling and planning involves performance
criteria such as sortie generation rates and mean time {o repair aircrafi. Such measures are quantity-
based and therefore indicate the need to assess and predict work output referenced to time. As
a result, the Air Force is researching cost-effective methods for obtaining work performance time

data.

As indicated in the current analyses, the current method of obtaining the performance time

estimates (through free response supervisor estimation) yielded ranges of values which were exces-

~ sively wide (sce Table 10). This may be due in part to that fact that supervisors provided their

estimates in a virtual free response format. This means that they were unconstrained in reference
to the estimates they could make. In future studies, it is recommen(ied that supervisors be forced
to limit their time estimates to a pre-established reasonable range. A reasonable range of estimates
could be derived using SMEs, much like Leighton and ;)thers used SMEs to develgﬁp benchmark

times (21).

Other recommendations involve the formulation of PC measures from the task performance
time data. One potential problem with creating PC measures according to the Carpenter and
others formulation, t* /1, is that the corﬁputed task-level PCs for each individual arc in part based
on the single task-level measure 1*. Since the computed PCs are based on them, care must e taken
to obtain {* values that are accurate so that the resulth‘lg PC values are properly interpretable. In
the current research, it was pointed out that the raw estimated times, t, for each task tended to

be highly variable indicating inconsistencies in the supervisors’ opinions about what a reasonable
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range of performance should be. This places some doubt in the accuracy of the estimated times,
especially those near the fast and slow end of the estimated range. Since {* was computed as
the .99x (minimum estimated time for the task (after editing)), there is some question as to the
credibility of such t* values. An appropriate way to address this problem may be to compute the
PC measure as in time studies where PC is coméuted as (tge/t) x 100. Computed in this fashion,

PC for a task is not dependent on a single measure 1°, but on the task average, t54g.

Also, it is important to note that Carpenter and others’ PC formulation is not a linear
transformation of the time variable, t, from which it is computed. This is what prompted AL/HRM
to formulate PC as t/t*, an inversion of the Carpenter and others formulation (7). A nonlinear
transformation can have the effect of influencing the degree of linear relationship between a variable
and another. It is recommended that the nonlinearity introduced by the Carpenter and others’
formulation be studied to determine its effect, and whether a linear transformat-ionv should be

considered in future studies.

5.2.2 Selecting a Task Weighting Scheme. Because of the nature of the PC measure
(quantity-based), it is recommended that relafive time spent measures continue to be considered
as a weighting factor. The PC measure, as defined, is indicative of a worker’s output relative to
some standard. In the current effort, that standard was t*, an estimate of the fastest possible
performance time. As such, the PC measure at the task-level must somehow be given different
weights reflective of how often the tasks are performed. This is so that an aggregate measure
which represents an airman’s actual capacity to produce (given the average job scenario) can be
computed. Recall that in the current effort, weights were derived for job duty areas as opposed to
individual tasks. This was due to the unavailability of task-level data. It is recommended that an
attempt be made to obtain and use relative time spent data derived for individual tasks as opposed
to those for an entire duty area. This will further differentiate tasks on level of importance and

may yield a more meaningful aggregate PC measure.
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5.2.8 Aggregating the Task-Level Data into an Overall Productive Capacily Measure.
One problem with averaging (both weighted and unweighted) task-level measures is that there is
significant information loss. In this thesis l"or instance, the actual response data for each indivvidual
was a row vector of about 50 task-level PC measures (see Figure 17). By weighted averaging, these
were collapsed into a single measure. In collapsing the data, any unique information provided in -
individual task ratings was lost or dampened. Perhaps a reduction in the dimensionality of the

response from 50 measures per person to one measure per person was too drastic.

One alternative to averaging is to treat the 204 x 50 (subjects x tasks) response matrix
as a multivariate analysis problem. A common dimensionalit&-reduction technique that could be

applied is factor analysis. According to Dillon and Goldstein, !

|

Factor analysis attempts to simplify complex and diverse relationships that exist among
a set of observed variables by uncovering common dlmensmns or factors that link to-
gether seemingly unrelated variables, and consequently prondes insight into the under-

lying structure of the data. (11. 53) |
|

|
In other words, factor analysis could be used to reduce the é)riginal set of 50 response variables
to a smaller subset.. of factors that account for rhost of the vaiiance in the task-level data (11:23).
In factor analysis, a factor represents an underlying qualitative d‘imension like a coordinate axis,
which defines the way in which different variables differ on tl14t dimension (11:60). Factor analysis
results in factor scoring coefficients which can be used to comi)ute factor scores given known levels
of the analyzed var.ables. Factor‘- analysis basically takes advantage of the underlying correlational
structure in the variables under analysis. Factors are derived such that correlated variables tend

to load on the same factors. Factors, then, represent common dimensions that correlated variables

share. For a-more complete discussion of factor analysis. refer to Dillon and Goldstein (11).

The response matrix in the current study could be factor-anaiyzed to determine any factor
structure that could be used to reduce the number of response variables to a set of less than 50
factors. Prediction models could then theoretically be develcped to predict computed factor scores.

Factor analysis seems to be a reasonable midpoint hetween collapsing the data into a single measure
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through averaging, and modeling with task-level data. The analyst or manpowér modeler would of

course be left with the non-trivial task of interpreting the factots ~1d resulting factor scores.

Another alternative for reducing the response matrix to less than 50 variables would be to
compute aggregate measures at the duty area level. Referring to Table 4, there are 20 duty areas

for the AGE specialty, 10 of which were represented by tasks in the current effort. The reduction

from 50 task-level variables to 10 or 20 duty area variables would be substantial. Aggregating

tasks from the same duty area, perhaps through weighted averaging, would provide aggregate
variables representing reasonable subsets of tasks. These duty area aggregate variables could then

be modeled.

In summary, multivariate analysis techniques and duty area aggregation provide other alter-
natives for reducing the dimensionality of the response data. The attractiveness of such alternatives
is that they may not be subject to the same degree of information loss as in the case of averaging

all the task-level data for an individual task into a single measure.

5.2.4 Developing Prediction Models. Recall that the regression models developed in this

thesis accounted for at inost 16% of thz varic: ze i ibe response, PC (maximum R? = .16). This

means that at least 84% of the variance in the response remains unexplained by the developed

models. To put this in context, consider Figure 27. Figure 27 indicates that there is a relatively -

enormous portion of variance in the response which remains to be explained. Recall that these
tesults were comparable for previous PC studies (5) (13) (38). This means that there is probably

significant improvement to be made in all phases of the job performance model development process.

A likely place to start improving the development of such models is in the job performance
measurement realm. But, as has heen proven over time, it is extremely difficult to develop a sound
yet cost efficient system for collecting valid and reliable job performance data. This problem has
been so pervasive in Industrial/Organizational Psychology that it has earned the fear-instilling

name the criterion problem. Yolumes have been written on job performance measurement and the
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Figure 27. Pie Chart Representing the Explained vs. Unexplained Variance in Productive Ca-
pacity Given the Current Models ’

- criterion problem. The topic of job performance measurement cannot be given the attention it is

due in this limited space, thus the reader is referred to Reference (6) for an introduction to the
topic.

Another likely area to be considered when seeking to improve job performance models is
the predictor arena. Only two potential predictors were constdered in the current eﬂ'ort; aptitude
and experience. As with job performance measurement, volumes have been wriiten concerning the
relationship between numerous predictor variables and job performance. But, remember that PC
is a fairly unique job performance measure in that it is supposed to measure a worker’s capacity
to produce, not how much lie or she actually produces. This implies that many of the personality
traits which would be expected to influence productivity would ndt be expected to influence PC.

Such measures include worker motivation, job interest, work environment, and iob satisfaction.

There still remain nuinerous potential predictors which would be expected to influence PC.
These include the type and amount of technical school training, the type and amount of on-

the-job training (OJT), the availability and quality of written technical guidance, the amount of
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technical interaction with highly-skilled individuals, trouble-shooting and diagnostié ability, and
"general mental ability, just to name a few. Many such predictors could be considered for inclusion
into Air Force job performance models. They may perhaps help to explain additional variance in

the response.

A final area for model improvement might be the type of model itself. i’erhaps linear
regression-based miodels are simply insufficient for modeling the job performam;.e of human be-
ings. Humans are obviously highly complex entities with each being motivated and affected by
countless factors. Added to this, the countless factors each influence different people in different
ways. For these reasons alone, linear regression models may never be able to explain the majority

of the variance in job performance.

In summary, there is significant improvement to be made in job performance modeling. Pos-
sible improvements could be made by improving the validity and reliability of the response (job
performance measures), by considering other potential predictors and by considering differeut types

of mathematical or maybe even non-mathematical models.
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Table 22: 454X1 Tasks Studied Under the Productive Capacity
Project

: Appendix A. 454X1 Tasks Studied Under the Productive Capacity Project

{ Task | Description

E120 | Make entries on supply issue and turn-in forms.

E143 | Make entries on AFTO Form 350 (Reparable Item Processing Tag).

F153 | Perform aircraft support air-conditioner visual and
service inspection.

F154 | Perform an aircraft support generator service inspection.

F155 | Perform a service inspection on a load bank.

F157 | Perform bomblift visual and service inspection.

F162 | Perform a service inspection on a hydraulic test stand.

G171 | Ferform aircraft support air compressor periodic inspection.

G179 | Perform combustor cap portion of a gas tutbine compressor

, periodic inspection.

G181 | Perform hydraulic test stand periodic inspection.

H202 | Fabricate wiring.

H203 | Isolate malfunction within electrical circuitry other than
integrated or solid state. :

H209 [ Measure resistance in AGE electrical systems by checking
various circuits in the ignition system of the MC-2A.

H215 | Perform AGE electrical systems operational checks.

‘H236 | Research T.O.s, charts, or diagrams for electrical maintenance
instructions. ' '

H237 | Solder electrical system wiring.

H238 | Cut an electrical system wire in half and splice it together
into a circle, using one crimp-type splice and one soldered heat
shrink splice. '

1247 | Adjust distributor points.

1248 | Ad)just reciprocating engine fuel system components.

1251 | Adjust turbine engine fuel system components.

1255 | Change the generator in an NF-2.

1260 | Clean commutator and slip rings on the generator of the NF-2.

1264 | Troubleshoot the NF-2 generator for the following symptoms of
malfunctions: (1) the engine will not start when cranked, and
(2) the engine starts but backfires at the carburetor.

1275 { Remove or install a carburetor on an MC-2A gasoline engine.

1283 | Remove and install engine exhaust manifold, seals, gaskets,

" | and common hardware.

1284 | Remove and replace an alternator belt.

1286 | Remove and install engine fuel pumps on the NF-2.

1299 | Remove and install engine.

1300 | Replace the flare fitting on a fuel line.

J332 | Isolate the possible heater system malfunctions associated
with a discrepancy that reads “burner will not ignite.”

J340 | Remove the burner control valve from an AGE heater.

1347 | Remove and install heater engine.

J355 | Remove and install temperature selector valve.

1406 ! Isolate hydraulic systems malfunction.
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Table 22: (continued)

Task

| Description

L421 | Remove and install hydraulic lines on B-1 stand.

L436 | Replace O-rings in hydraulic systems component.

L437 | Research T.O.s, charts, or diagrams for AGE hydraulic systems
maintenance.

M444 | Assemble bleed air hose.

M446 | Troubleshoot the MC-1A compressor for the discrepancy
“Compressor fails to unload at 3600 psi.”

M447 | Perform AGE pneumatic system operational check.

N475 | Isolate brake sy .tem malfunction.

N477 | Repack wheel bearings of one wheel on AGE equipment (NF-2).

N486 | Remove and install AGE brake pads.

N487 | Remove and install AGE fuel tank.

N488 | Change an AGE tire and tube assembly.

N494 | Remove and install one six inch bolted hinge.

N503 | Look up the part number, source code, and work unit code to
requisition a new axle assembly for an MC-2A compressor
(with date plate containing the following information:
MFG- Davey Compressor Company, Contract #-DSA 700-74C-9004,
Serial #-16160, Reg #-4310-75-D18-6160, Model #-2MC-2,
Part #-27391).

P549 | Perform an operator’s inspection of an AF vehicle, completing
AFTO Form 373.

P554 | Pick up and deliver -60.

P555 | Prepare AGE (NF-2) for shipment during a training exercise

or mobilizaticn.

The above task descriptions were taken from Reference (24)
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